Answer:
(-162)/7 or -23 1/7 as mixed fraction
Step-by-step explanation:
Simplify the following:
(-36)/14 (-18) (-3)/6
Hint: | Express (-36)/14 (-18) (-3)/6 as a single fraction.
(-36)/14 (-18) (-3)/6 = (-36 (-18) (-3))/(14×6):
(-36 (-18) (-3))/(14×6)
Hint: | In (-36 (-18) (-3))/(14×6), divide -18 in the numerator by 6 in the denominator.
(-18)/6 = (6 (-3))/6 = -3:
(-36-3 (-3))/14
Hint: | In (-36 (-3) (-3))/14, the numbers -36 in the numerator and 14 in the denominator have gcd greater than one.
The gcd of -36 and 14 is 2, so (-36 (-3) (-3))/14 = ((2 (-18)) (-3) (-3))/(2×7) = 2/2×(-18 (-3) (-3))/7 = (-18 (-3) (-3))/7:
(-18 (-3) (-3))/7
Hint: | Multiply -18 and -3 together.
-18 (-3) = 54:
(54 (-3))/7
Hint: | Multiply 54 and -3 together.
54 (-3) = -162:
Answer: (-162)/7
Answer:
46/3
Step-by-step explanation:
|2a| - b/3
Plug in the values and evaluate.
|2(7)| - (-4)/3
|14| + 4/3
Apply | a | = a
14 + 4/3
42/3 + 4/3
= 46/3
The first step to solving this is to use tan(t) =

to transform this expression.
cos(x) ×

Using cot(t) =

,, transform the expression again.
cos(x) ×

Next you need to write all numerators above the least common denominator (cos(x)sin(x)).
cos(x) ×

Using sin(t)² + cos(t)² = 1,, simplify the expression.
cos(x) ×

Reduce the expression with cos(x).

Lastly,, use

= csc(t) to transform the expression and find your final answer.
csc(x)
This means that the final answer to this expression is csc(x).
Let me know if you have any further questions.
:)