Because LP and NP are the same measure, that means that MP is a bisector. It bisects side LN and it also bisects angle LMN. Where MP meets LN creates right angles. What we have then thus far is that angle LMP is congruent to angle NMP and that angle LPM is congruent to angle NPM and of course MP is congruent to itself by the reflexive property. Therefore, triangle LPM is congruent to triangle NMP and side LM is congruent to side NM by CPCTC. Side LM measures 11.
Simplifying
2c + 3 = 3c + -4
Reorder the terms:
3 + 2c = 3c + -4
Reorder the terms:
3 + 2c = -4 + 3c
Solving
3 + 2c = -4 + 3c
Solving for variable 'c'.
Move all terms containing c to the left, all other terms to the right.
Add '-3c' to each side of the equation.
3 + 2c + -3c = -4 + 3c + -3c
Combine like terms: 2c + -3c = -1c
3 + -1c = -4 + 3c + -3c
Combine like terms: 3c + -3c = 0
3 + -1c = -4 + 0
3 + -1c = -4
Add '-3' to each side of the equation.
3 + -3 + -1c = -4 + -3
Combine like terms: 3 + -3 = 0
0 + -1c = -4 + -3
-1c = -4 + -3
Combine like terms: -4 + -3 = -7
-1c = -7
Divide each side by '-1'.
c = 7
Simplifying
c = 7
Answer:
Thanks????????????????????
Answer:
50
Step-by-step explanation:
solved
Answer:
Surface area of cylinder= 211.5π
Step-by-step explanation:
Given,
Height of cylinder = 19cm
Diameter of cylinder = 9cm
i.e Radius of cylinder = diameter/2 = 9/2 = 4.5cm
Surface area of cylinder = 2πrh + 2πr²
Plug corresponding values of r and h in surface are formula.
Surface area of cylinder = 2πrh + 2πr² = 2π*4.5*19 + 2π*4.5²
Surface area of cylinder = 171π+40.5π = 211.5π
Hence we get surface area of cylinder= 211.5π