Answer:
c=3
Step-by-step explanation:
do u need the explanation?
I would go with D, it looks like it is the most linear out of the rest, Hope it helps:)
Answer:
C. 15²π
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Geometry</u>
- Diameter: d = 2r
- Area of a Circle: A = πr²
Step-by-step explanation:
<u>Step 1: Define</u>
d = 30 m
<u>Step 2: Find Area</u>
- Substitute [D]: 30 m = 2r
- Isolate <em>r</em>: 15 m = r
- Rewrite: r = 15 m
- Substitute [AC]: A = π(15 m)²
- Rearrange: A = 15²π
Answer:
(a) ¬(p→¬q)
(b) ¬p→q
(c) ¬((p→q)→¬(q→p))
Step-by-step explanation
taking into account the truth table for the conditional connective:
<u>p | q | p→q </u>
T | T | T
T | F | F
F | T | T
F | F | T
(a) and (b) can be seen from truth tables:
for (a) <u>p∧q</u>:
<u>p | q | ¬q | p→¬q | ¬(p→¬q) | p∧q</u>
T | T | F | F | T | T
T | F | T | T | F | F
F | T | F | T | F | F
F | F | T | T | F | F
As they have the same truth table, they are equivalent.
In a similar manner, for (b) p∨q:
<u>p | q | ¬p | ¬p→q | p∨q</u>
T | T | F | T | T
T | F | F | T | T
F | T | T | T | T
F | F | T | F | F
again, the truth tables are the same.
For (c)p↔q, we have to remember that p ↔ q can be written as (p→q)∧(q→p). By replacing p with (p→q) and q with (q→p) in the answer for part (a) we can change the ∧ connector to an equivalent using ¬ and →. Doing this we get ¬((p→q)→¬(q→p))