Let's eliminate these one by one.
The first pair would not be the same, as X would most likely be in group IA, and Y would be in group VIIA, because of their tendency to gain and lose electrons.
The second pair would also violate the same rule, but X would most likely be in group IIA, and Y would most likely be in group VIA.
The third pair would not be the same, as X is most likely in group VIIA, and since Y has eight valence electrons, it is most likely a noble gas.
The final pair has X with atomic number 15, making it phosphorous. Phosphorous wants to gain 3 electrons to have a full octet of 8 outer "valence" electrons, and Y would also like to gain 3 electrons. This means it is possible that the final pair would be in the same group.
A teacher uses a bow and arrow to demonstrate accuracy and precision. she shoots several arrows, aiming at the exact center of the target each time. thedrawing below shows where her arrows hit the target.
<span> The statement that best describes her shots is
</span><span>Her shots were neither accurate nor precise
</span>hope it helps
Answer:
In a chemical reaction, reactants that are not used up when the reaction is finished are called excess reagents. The reagent that is completely used up or reacted is called the limiting reagent, because its quantity limits the amount of products formed.
Explanation:
Answer:
We can do the nitration of benzene by treating the benzene with a mixture of nitric acid and sulphuric acid by not extending the temperature of 50°C
Explanation:
Nitration of benzene takes place by treating the benzene with a mixture of nitric acid and sulphuric acid at low temperatures such as the temperatures below 50°C
The nitration of benzene takes place through electrophilic substitution reaction
In this reaction the electrophile is nitronium ion (NO2+) which performs an electrophilic substitution reaction on the benzene ring and during the reaction an intermediate will also be formed in which there will be positive charge distributed in the benzene
These electrophile is generated when nitric acid is treated with sulphuric acid
As nitric acid is a strong oxidising agent, here in this case the oxidation state of nitrogen will change from +5 to +3
The reactions regarding the nitration of benzene is present in the file attached
Answer:
The effects of supercritical CO2 (SC-CO2) on the microbiological, sensory (taste, odour, and colour), nutritional (vitamin C content), and physical (cloud, total acidity, pH, and °Brix) qualities of orange juice were studied. The CO2 treatment was performed in a 1 litre capacity double-walled reactor equipped with a magnetic stirring system. Freshly extracted orange juice was treated with supercritical CO2, pasteurised at 90°C, or left untreated. There were no significant differences in the sensory attributes and physical qualities between the CO2 treated juice and freshly extracted juice. The CO2 treated juice retained 88% of its vitamin C, while the pasteurised juice was notably different from the fresh juice and preserved only 57% of its vitamin C content. After 8 weeks of storage at 4°C, there was no microbial growth in the CO2 treated juice.