Answer:
Median.
Step-by-step explanation:
The median is a better measure than the mean when there is an outlier.
Uhhh
Could you finish the question?
To find the mean or the avg you add up all the numbers you have and then divide by how many numbers you added together in this case 5


so the mean is 22, hope this helped you!
Answer: The required solution is

Step-by-step explanation: We are given to solve the following differential equation :

Let us consider that
be an auxiliary solution of equation (i).
Then, we have

Substituting these values in equation (i), we get
![5m^2e^{mt}+3me^{mt}-2e^{mt}=0\\\\\Rightarrow (5m^2+3y-2)e^{mt}=0\\\\\Rightarrow 5m^2+3m-2=0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[\textup{since }e^{mt}\neq0]\\\\\Rightarrow 5m^2+5m-2m-2=0\\\\\Rightarrow 5m(m+1)-2(m+1)=0\\\\\Rightarrow (m+1)(5m-1)=0\\\\\Rightarrow m+1=0,~~~~~5m-1=0\\\\\Rightarrow m=-1,~\dfrac{1}{5}.](https://tex.z-dn.net/?f=5m%5E2e%5E%7Bmt%7D%2B3me%5E%7Bmt%7D-2e%5E%7Bmt%7D%3D0%5C%5C%5C%5C%5CRightarrow%20%285m%5E2%2B3y-2%29e%5E%7Bmt%7D%3D0%5C%5C%5C%5C%5CRightarrow%205m%5E2%2B3m-2%3D0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%5B%5Ctextup%7Bsince%20%7De%5E%7Bmt%7D%5Cneq0%5D%5C%5C%5C%5C%5CRightarrow%205m%5E2%2B5m-2m-2%3D0%5C%5C%5C%5C%5CRightarrow%205m%28m%2B1%29-2%28m%2B1%29%3D0%5C%5C%5C%5C%5CRightarrow%20%28m%2B1%29%285m-1%29%3D0%5C%5C%5C%5C%5CRightarrow%20m%2B1%3D0%2C~~~~~5m-1%3D0%5C%5C%5C%5C%5CRightarrow%20m%3D-1%2C~%5Cdfrac%7B1%7D%7B5%7D.)
So, the general solution of the given equation is

Differentiating with respect to t, we get

According to the given conditions, we have

and
![y^\prime(0)=2.8\\\\\Rightarrow -A+\dfrac{B}{5}=2.8\\\\\Rightarrow -5A+B=14\\\\\Rightarrow -5A-A=14~~~~~~~~~~~~~~~~~~~~~~~~~~~[\textup{Uisng equation (ii)}]\\\\\Rightarrow -6A=14\\\\\Rightarrow A=-\dfrac{14}{6}\\\\\Rightarrow A=-\dfrac{7}{3}.](https://tex.z-dn.net/?f=y%5E%5Cprime%280%29%3D2.8%5C%5C%5C%5C%5CRightarrow%20-A%2B%5Cdfrac%7BB%7D%7B5%7D%3D2.8%5C%5C%5C%5C%5CRightarrow%20-5A%2BB%3D14%5C%5C%5C%5C%5CRightarrow%20-5A-A%3D14~~~~~~~~~~~~~~~~~~~~~~~~~~~%5B%5Ctextup%7BUisng%20equation%20%28ii%29%7D%5D%5C%5C%5C%5C%5CRightarrow%20-6A%3D14%5C%5C%5C%5C%5CRightarrow%20A%3D-%5Cdfrac%7B14%7D%7B6%7D%5C%5C%5C%5C%5CRightarrow%20A%3D-%5Cdfrac%7B7%7D%7B3%7D.)
From equation (ii), we get

Thus, the required solution is
