1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tema [17]
3 years ago
6

Tell whether the ordered pair is a solution of the system of liner equation (3,2)x+y=5 y-2x=-4

Mathematics
1 answer:
Juli2301 [7.4K]3 years ago
7 0

Given:

The two linear equations are:

x+y=5

y-2x=-4

To find:

Whether the ordered pair (3,2) is a solution of the given system of liner equations.

Solution:

We have,

x+y=5          ...(i)

y-2x=-4        ...(ii)

If both the equations are satisfy by the point (3,2), then this point is the solution of the given system of equations.

Putting x=3,y=2 in (i), we get

3+2=5

5=5

This statement is true. It means the point (3,2) satisfies the equation (i).

Putting x=3,y=2 in (ii), we get

2-2(3)=-4

2-6=-4

-4=-4

This statement is true. It means the point (3,2) satisfies the equation (ii).

Since both the equations are satisfy by the point (3,2), therefore the point (3,2) is the solution of the given system of equations.

You might be interested in
What is the mean absolute deviation of the data set? {12, 10, 10, 8, 6, 7, 7, 12}
Simora [160]

Answer:

The MAD of  {12, 10, 10, 8, 6, 7, 7, 12} is 2.

Step-by-step explanation:

<u><em>Step 1 : Add all the values Up:</em></u>

<u><em /></u>12+10+10+8+6+7+7+12=72

<u><em>Step 2 : Divide them by the number of items or numbers:</em></u>

<u><em></em></u>\frac{12+10+10+8+6+7+7+12}{8}=9<u><em></em></u>

<u><em></em></u>

<u><em>Step 3: Find the absolute deviations:</em></u>

<u><em></em></u>12-9=3\\10-9=1\\10-9=1\\9-8=1\\9-6=3\\9-7=2\\9-7=2\\12-9=3\\<u><em></em></u>

<u><em>Step 4: Add all the absolute deviations:</em></u>

3+1+1+1+3+2+2+3=16

<u><em>Step 5: Find the mean:</em></u>

\frac{3+1+1+1+3+2+2+3}{8}=2

7 0
3 years ago
Please answer this correctly
rewona [7]

Answer:

2/3

Step-by-step explanation:

There are 2 numbers out of 3 that fit the rule, 1 and 3. There is a 2/3 chance picking one of them.

3 0
3 years ago
Read 2 more answers
Pls help i dont get it ​
baherus [9]

Answer:

What is it?

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
A silent auction was held for a quilt donated for charity. Fifteen bids that were drawn randomly are listed here. Find the value
Alik [6]
45th percentile means that 45% of the data fall below that number while 55% (that is, 100-45) fall above it.

Now, arranging the number in ascending order;
$60, $85, $95, $105, $120, $145, $155, $175, $190, $215, $235, $240, $260, $285, $325

The total number of counts = 15
Then,
Index = 15*45% = 15*0.45 = 6.75

Round up,
Index = 7

The,
7th number = $155

Therefore, 45th percentile value of the data = $155
8 0
3 years ago
Given two points P(sinθ+2, tanθ-2) and Q(4sin²θ+4sinθcosθ+2acosθ, 3sinθ-2cosθ+a). Find constant "a" and the corresponding value
vodomira [7]

Answer:

\rm\displaystyle \displaystyle \displaystyle θ=    {60}^{ \circ} , {300}^{ \circ}

\rm \displaystyle a =    - \frac{   \sqrt{3} }{2}    - 1, \frac{\sqrt{3}}{2}  - 1

Step-by-step explanation:

we are given two <u>coincident</u><u> points</u>

\displaystyle  P( \sin(θ)+2,  \tan(θ)-2)   \: \text{and } \\  \displaystyle Q(4 \sin ^{2} (θ)+4 \sin(θ) \cos(θ)+2a \cos(θ), 3 \sin(θ)-2 \cos(θ)+a)

since they are coincident points

\rm \displaystyle  P( \sin(θ)+2,  \tan(θ)-2)    = \displaystyle Q(4 \sin ^{2} (θ)+4 \sin(θ )\cos(θ)+2a \cos(θ), 3 \sin(θ)-2 \cos(θ)+a)

By order pair we obtain:

\begin{cases}  \rm\displaystyle \displaystyle 4 \sin ^{2} (θ)+4 \sin(θ) \cos(θ)+2a \cos(θ) =  \sin( \theta)   + 2 \\   \\  \displaystyle 3 \sin( \theta)  - 2  \cos( \theta)  + a =  \tan( \theta)  - 2\end{cases}

now we end up with a simultaneous equation as we have two variables

to figure out the simultaneous equation we can consider using <u>substitution</u><u> method</u>

to do so, make a the subject of the equation.therefore from the second equation we acquire:

\begin{cases}  \rm\displaystyle \displaystyle 4 \sin ^{2} (θ)+4 \sinθ \cos(θ)+2a \cos(θ )=  \sin( \theta)   + 2 \\   \\  \boxed{\displaystyle  a =  \tan( \theta)  - 2 - 3 \sin( \theta)   +  2  \cos( \theta) } \end{cases}

now substitute:

\rm\displaystyle \displaystyle 4 \sin ^{2} (θ)+4 \sin(θ) \cos(θ)+2 \cos(θ) \{\tan( \theta)  - 2 - 3 \sin( \theta)   +  2  \cos( \theta)   \}=  \sin( \theta)   + 2

distribute:

\rm\displaystyle \displaystyle 4 \sin ^{2}( θ)+4 \sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta)  - 6 \sin( \theta) \cos( \theta)    + 4  \cos ^{2} ( \theta)   =  \sin( \theta)   + 2

collect like terms:

\rm\displaystyle \displaystyle 4 \sin ^{2}( θ) - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta)     + 4  \cos ^{2} ( \theta)   =  \sin( \theta)   + 2

rearrange:

\rm\displaystyle \displaystyle 4 \sin ^{2}( θ) + 4 \cos ^{2} ( \theta)  - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta) + =  \sin( \theta)   + 2

by <em>Pythagorean</em><em> theorem</em> we obtain:

\rm\displaystyle \displaystyle 4  - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta)  =  \sin( \theta)   + 2

cancel 4 from both sides:

\rm\displaystyle \displaystyle   - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta)  =  \sin( \theta)    - 2

move right hand side expression to left hand side and change its sign:

\rm\displaystyle \displaystyle   - 2\sin(θ) \cos(θ)+\sin(θ ) - 4\cos( \theta) + 2  =  0

factor out sin:

\rm\displaystyle \displaystyle  \sin (θ) (- 2 \cos(θ)+1) - 4\cos( \theta) + 2  =  0

factor out 2:

\rm\displaystyle \displaystyle  \sin (θ) (- 2 \cos(θ)+1)  + 2(- 2\cos( \theta) + 1 ) =  0

group:

\rm\displaystyle \displaystyle ( \sin (θ)   + 2)(- 2 \cos(θ)+1)  =  0

factor out -1:

\rm\displaystyle \displaystyle -  ( \sin (θ)   + 2)(2 \cos(θ) - 1)  =  0

divide both sides by -1:

\rm\displaystyle \displaystyle   ( \sin (θ)   + 2)(2 \cos(θ) - 1)  =  0

by <em>Zero</em><em> product</em><em> </em><em>property</em> we acquire:

\begin{cases}\rm\displaystyle \displaystyle   \sin (θ)   + 2 = 0 \\ \displaystyle2 \cos(θ) - 1=  0 \end{cases}

cancel 2 from the first equation and add 1 to the second equation since -1≤sinθ≤1 the first equation is false for any value of theta

\begin{cases}\rm\displaystyle \displaystyle   \sin (θ)     \neq  - 2 \\ \displaystyle2 \cos(θ) =  1\end{cases}

divide both sides by 2:

\rm\displaystyle \displaystyle \displaystyle \cos(θ) =   \frac{1}{2}

by unit circle we get:

\rm\displaystyle \displaystyle \displaystyle θ=    {60}^{ \circ} , {300}^{ \circ}

so when θ is 60° a is:

\rm \displaystyle a =  \tan(  {60}^{ \circ} )  - 2 - 3 \sin(  {60}^{ \circ} )   +  2  \cos(  {60}^{ \circ} )

recall unit circle:

\rm \displaystyle a =   \sqrt{3}  - 2 -  \frac{ 3\sqrt{3} }{2}   +  2   \cdot  \frac{1}{2}

simplify which yields:

\rm \displaystyle a =    - \frac{   \sqrt{3} }{2}    - 1

when θ is 300°

\rm \displaystyle a =  \tan(  {300}^{ \circ} )  - 2 - 3 \sin(  {300}^{ \circ} )   +  2  \cos(  {300}^{ \circ} )

remember unit circle:

\rm \displaystyle a =  -  \sqrt{3}   - 2  +   \frac{3\sqrt{ 3} }{2}  +  2   \cdot  \frac{1}{2}

simplify which yields:

\rm \displaystyle a = \frac{ \sqrt{3} }{2} - 1

and we are done!

disclaimer: also refer the attachment I did it first before answering the question

5 0
3 years ago
Other questions:
  • 1. Four more than a number.<br> er bronto tngitoup et .I
    14·1 answer
  • Barry has 64 butterflies in his collection. He gave half of them to his sister and 12 to his brother. How many butterflies does
    12·2 answers
  • An isosceles triangle has at least two congruent sides. The perimeter of a certain isosceles triangle is at most 12 in. The leng
    9·1 answer
  • In 2012 Obama receiver 65,899,660 votes and Romney received 60,932,152 votes. In this election, if a voter for either Obama or R
    10·2 answers
  • Find the sum of the arithmetic series given a1=8,a14=99,n=14.
    13·1 answer
  • Below is a list of your checking account transactions for the month of September 2018. Enter these transactions on the ledger be
    10·2 answers
  • Please help me plsssssss! asappp. I'll mark brainlest and give points ​
    15·1 answer
  • Evaluate the function
    10·1 answer
  • Jason draws a triangle ABC on a coordinate plane and rotates it 180 clockwise about the origin to create A'B'C'. Which rule desc
    6·1 answer
  • Write the domain and range of the graph below…
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!