14. 1.5, 10 <- Answer
15. 5,1 <- Answer
Proof 14
Solve the following system:
{2 x - y = -7 | (equation 1)
4 x - y = -4 | (equation 2)
Swap equation 1 with equation 2:
{4 x - y = -4 | (equation 1)
2 x - y = -7 | (equation 2)
Subtract 1/2 × (equation 1) from equation 2:
{4 x - y = -4 | (equation 1)
0 x - y/2 = -5 | (equation 2)
Multiply equation 2 by -2:
{4 x - y = -4 | (equation 1)
0 x+y = 10 | (equation 2)
Add equation 2 to equation 1:
{4 x+0 y = 6 | (equation 1)
0 x+y = 10 | (equation 2)
Divide equation 1 by 4:
{x+0 y = 3/2 | (equation 1)
0 x+y = 10 | (equation 2)
Collect results:
Answer: {x = 1.5
y = 10
Proof 15.
Solve the following system:
{5 x + 7 y = 32 | (equation 1)
8 x + 6 y = 46 | (equation 2)
Swap equation 1 with equation 2:
{8 x + 6 y = 46 | (equation 1)
5 x + 7 y = 32 | (equation 2)
Subtract 5/8 × (equation 1) from equation 2:{8 x + 6 y = 46 | (equation 1)
0 x+(13 y)/4 = 13/4 | (equation 2)
Divide equation 1 by 2:
{4 x + 3 y = 23 | (equation 1)
0 x+(13 y)/4 = 13/4 | (equation 2)
Multiply equation 2 by 4/13:
{4 x + 3 y = 23 | (equation 1)
0 x+y = 1 | (equation 2)
Subtract 3 × (equation 2) from equation 1:
{4 x+0 y = 20 | (equation 1)
0 x+y = 1 | (equation 2)
Divide equation 1 by 4:
{x+0 y = 5 | (equation 1)
0 x+y = 1 | (equation 2)
Collect results:
Answer: {x = 5 y = 1
Answer:
11
Step-by-step explanation:
The mean is calculated as
mean = 
let the third number be x , then
= 15 ( multiply both sides by 3 to clear the fraction )
34 + x = 45 ( subtract 34 from both sides )
x = 11 ← third number
The first one and the last one, the 2 middle ones are not corresponding
Answer:
See possible solutions below.
Step-by-step explanation:
The statements are not given. But the following can be determined from the graph:
- More days recorded temperatures between 82 and 84 then other temperatures.
- The least number of days recorded temperatures between 88 and 90.
- The histogram is skewed to the right also known as positive skewed distribution.
- The mean and median will most likely be in the range of 82-84 temperatures. But the mean will be greater than the median.