Answer:
1) Distribute 1.2 to 6.3 and -7x
2)Combine 3.5 and 7.56
3)Subtract 11.06 from both sides
Step-by-step explanation:
3.5 + 1.2(6.3 - 7x) = 9.38
Distribute 1.2 to 6.3 and -7x
3.5 + 1.2* 6.3 - 1.2 * 7x = 9.38
3.5 + 7.56 - 8.4x = 9.38
Combine 3.5 and 7.56
11.06 - 8.4x = 9.38
Subtract 11.06 from both sides
11.06 - 8.4x -11.06 = 9.38 - 11.06
-8.4x = -1.68
To find solution:
Divide both sides by (-8.4)
-8.4x/-8.4 = -1.68/-8.4
x = 0.02
Answer:
I think the answer would be the 9 pack.
Step-by-step explanation:
Think, if you divide each of the packs by their price the 9 pack is cheaper for one roll.
Answer:
19
Step-by-step explanation:
70 - 51 = 19
To check:
19 + 51 = 70

<h3><u>Given </u><u>:</u><u>-</u></h3>
- We have given the coordinates of the triangle PQR that is P(-4,6) , Q(6,1) and R(2,9)
<h3><u>To</u><u> </u><u>Find </u><u>:</u><u>-</u></h3>
- <u>We </u><u>have </u><u>to </u><u>calculate </u><u>the </u><u>length </u><u>of </u><u>the </u><u>sides </u><u>of </u><u>given </u><u>triangle </u><u>and </u><u>also </u><u>we </u><u>have </u><u>to </u><u>determine </u><u>whether </u><u>it </u><u>is </u><u>right </u><u>angled </u><u>triangle </u><u>or </u><u>not </u>
<h3><u>Let's </u><u>Begin </u><u>:</u><u>-</u></h3>
<u>Here</u><u>, </u><u> </u><u>we </u><u>have </u>
- Coordinates of P =( x1 = -4 , y1 = 6)
- Coordinates of Q = ( x2 = 6 , y2 = 1 )
- Coordinates of R = ( x3 = 2 , y3 = 9 )
<u>By </u><u>using </u><u>distance </u><u>formula </u>

<u>Subsitute </u><u>the </u><u>required </u><u>values </u><u>in </u><u>the </u><u>above </u><u>formula </u><u>:</u><u>-</u>
Length of side PQ






Length of QR





Length of RP





<h3><u>Now</u><u>, </u></h3>
We have to determine whether the triangle PQR is right angled triangle
<h3>Therefore, </h3>
<u>By </u><u>using </u><u>Pythagoras </u><u>theorem </u><u>:</u><u>-</u>
- Pythagoras theorem states that the sum of squares of two sides that is sum of squares of 2 smaller sides of triangle is equal to the square of hypotenuse that is square of longest side of triangle
<u>That </u><u>is</u><u>, </u>

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>,</u>


<u>From </u><u>above </u><u>we </u><u>can </u><u>conclude </u><u>that</u><u>, </u>
- The triangle PQR is not a right angled triangle because 205 ≠ 45 .