(2,-1) is the correct pair I hoped this helped :)
this is because east is two to your right and south is one down
Answer:
You need to use the ruler to measure the sides. Find the area of the whole square and subtract that from the area of the white square. That's your answer.
Answer:
The sum of its 30 terms is 38167.5
Step-by-step explanation:
Given:
The First term in the AP is -504
The Sum of its 9 terms is -126
To Find:
The sum of its 30 terms = ?
Solution:
The sum of n terms of an AP:
![S_n = (\frac{n}{2} ) [ 2 a_1 + ( n - 1 ) d ]](https://tex.z-dn.net/?f=S_n%20%3D%20%28%5Cfrac%7Bn%7D%7B2%7D%20%29%20%5B%202%20a_1%20%2B%20%28%20n%20-%201%20%29%20d%20%5D)
The sum of 9 terms of an AP:
![S_9 = (\frac{9 }{2} ) [ 2(-504) + ( 9 - 1 )d ]](https://tex.z-dn.net/?f=S_9%20%3D%20%28%5Cfrac%7B9%20%7D%7B2%7D%20%29%20%5B%202%28-504%29%20%2B%20%28%209%20-%201%20%29d%20%5D)
![S_9 = (4.5 )[ 2 (-504)+ ( 8 ) d ]](https://tex.z-dn.net/?f=S_9%20%3D%20%284.5%20%29%5B%202%20%28-504%29%2B%20%28%208%20%29%20d%20%5D)

(-4536) +36d = -126
36 d = -126+4536
36 d= 4410

d = 122.5
The sum of its 30 terms is
![S_{30} = ( \frac{30 }{2 }) [ 2 (-504) + ( 30-1)(122.5) ]](https://tex.z-dn.net/?f=S_%7B30%7D%20%3D%20%28%20%5Cfrac%7B30%20%7D%7B2%20%7D%29%20%5B%202%20%28-504%29%20%2B%20%28%2030-1%29%28122.5%29%20%5D)
![S_{30} =(15) [ 2 (-504) + ( 29)(122.5) ]](https://tex.z-dn.net/?f=S_%7B30%7D%20%3D%2815%29%20%5B%202%20%28-504%29%20%2B%20%28%2029%29%28122.5%29%20%5D)
![S_{30} = [ 2 (-504)(15) + ( 29)(122.5)(15) ]](https://tex.z-dn.net/?f=S_%7B30%7D%20%3D%20%5B%202%20%28-504%29%2815%29%20%2B%20%28%2029%29%28122.5%29%2815%29%20%5D)
![S_{30} = [ -15120 + 53287.5 ]](https://tex.z-dn.net/?f=S_%7B30%7D%20%3D%20%5B%20-15120%20%2B%2053287.5%20%5D)

Answer:
• x = 0
• x = b/a
Step-by-step explanation:
Subtract the term on the right and factor:
ax^2 -bx = 0
x(ax -b) = 0
The zero product rule lets you write this as two equations:
x = 0
ax -b = 0
The latter can be rearranged to ...
ax = b
x = b/a
Of the choices shown, the equations for x are ...
x = 0
x = b/a