Answer: the graph farthest to the right is almost correct. If you substitute values for x in the function f(x)= -3√x , the output does not match the curve on the graphs shown.
If you have a choice that includes only a curve to the right of the y- axis, that would be better.
Step-by-step explanation: Square roots of Negative x-values will result in imaginary numbers. Otherwise the graph with the curve passing through coordinates (1,-3) (4,-6) and (9,-9) is a good choice.
(And ask your teacher about the square root of negative numbers on this graph.)
Answer:
The percentle for Abby's score was the 89.62nd percentile.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation(which is the square root of the variance)
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
Abby's mom score:
93rd percentile in the math SAT exam. In 1982 the mean score was 503 and the variance of the scores was 9604.
93rd percentile. X when Z has a pvalue of 0.93. So X when Z = 1.476.

So




Abby's score
She scored 648.

So



has a pvalue of 0.8962.
The percentle for Abby's score was the 89.62nd percentile.
He will have 425/(1/2) = 425 x 2 = 850 plots.