Answer: ( -0.731, 0.682)
Step-by-step explanation:
The unit vector is defined as a vector that points in the same direction as our vector (137 degrees from the x-axis) and has a magnitude of 1.
Knowing the angle, is really simple to do it.
First, we know that for a radius R and an angle A, the rectangular coordinates can be written as:
x = R*cos(A)
y = R*sin(A)
And if we want that the magnitude/modulus of our vector to be 1, then R = 1, and we know that A = 137°
x = 1*cos(137°) = -0.731
y = 1*sin(137°) = 0.682
Then the unit vector is: ( -0.731, 0.682)
Answer:
19
Step-by-step explanation:
the 2 angles shown are complementary meaning that they will add up to equal 90
x+71=90
subtract 71 from each side x=19
Answer:
Step-by-step explanation:
Well you can make the put the x with 90x and that will make 91x. Then you can add 91x with 26. 91x+26= 13(7x + 2). Hope that helped
Answer:
p = -6.5
Step-by-step explanation:
<u>Given:</u>
<u>Solving for p:</u>
- 18+ 2 (3p – 8) = –37
- 18 + 6p - 16 = -37
- 6p + 2 = -37
- 6p = -37 - 2
- 6p = -39
- p = -39/6
- p = -6.5
Option 2 is correct in the list
MrBillDoesMath!
Answer to #4: 81/256 * s^8 * t^ 12
Comments:
(7x^3) ^ (1/2) = 7 ^ (1/2) * x^(3/2) where ^(1/2) means the square root of a quantity. The answer written (7x^3) is NOT correct.
---------------------
(1) (27s^7t^11)^ (4/3)
= 27^(4/3) * (s^7)^(4/3) * (t^11)^ (4/3)
As 27 = 3^3, 27 ^(4/3) = 3^4 = 81
(2) (-64st^2)^ (4/3) = (-64)^(4/3) * (s^4/3) * t(^8/3)
As 64 = (-4)^3, (-64)^(4/3) = (-4)^4 = +256
So (1)/(2) =
81 * s^(28/3)* t^(44/3)
------------------------------- =
256 s^(4/3) * t^((8/3)
81/256 * s ^ (28/3 - 4/3) * t^(44/3 - 8/3) =
81/256 * s^(24/3) * t (36/3) =
81/256 * s^8 * t^ 12
MrB