1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
grigory [225]
2 years ago
10

I need help very soon.

Mathematics
2 answers:
babymother [125]2 years ago
4 0

Answer:

i would be glad to help but i don't understand what to do

Step-by-step explanation:

guajiro [1.7K]2 years ago
3 0
I believe it is

1
.21
2.1
You might be interested in
What is the distance to the earth’s horizon from point P?<br><br> Express your answer as a decimal
rewona [7]

Answer:

The distance to the earth's horizon from point P is 216.2198187 mi, appriximately 216.22 mi

Step-by-step explanation:

This is a right triangle:

Hypotenuse: c=3959 mi + 5.9 mi → c=3964.9 mi

Leg 1: a=x=?

Leg 2: b=3959 mi

Using the Pytagorean theorem:

a^2+b^2=c^2

Replacing the known values:

(x)^2+(3959 mi)^2=(3964.9 mi)^2

Solving for x: Squaring:

x^2+15,673,681 mi^2=15,720,432.01 mi^2

Subtracting 15,673,681 mi^2 both sides of the equation:

x^2+15,673,681 mi^2-15,673,681 mi^2=15,720,432.01 mi^2-15,673,681 mi^2

x^2=46,751.01 mi^2

Square root both sides of the equation:

sqrt(x^2)=sqrt(46,751.01 mi^2)

x=216.2198187 mi

x=216.22 mi

3 0
3 years ago
-24+15-6=x
suter [353]

Answer:

x = -15

Step-by-step explanation:

-24 + 15 - 6 = x

-9 - 6 = x

-15 = x

4 0
3 years ago
Read 2 more answers
(a) Let R = {(a,b): a² + 3b &lt;= 12, a, b € z+} be a relation defined on z+)
grin007 [14]

Answer:

R is an equivalence relation, since R is reflexive, symmetric, and transitive.

Step-by-step explanation:

The relation R is an equivalence if it is reflexive, symmetric and transitive.

The order to options required to show that R is an equivalence relation are;

((a, b), (a, b)) ∈ R since a·b = b·a

Therefore, R is reflexive

If ((a, b), (c, d)) ∈ R then a·d = b·c, which gives c·b = d·a, then ((c, d), (a, b)) ∈ R

Therefore, R is symmetric

If ((c, d), (e, f)) ∈ R, and ((a, b), (c, d)) ∈ R therefore, c·f = d·e, and a·d = b·c

Multiplying gives, a·f·c·d = b·e·c·d, which gives, a·f = b·e, then ((a, b), (e, f)) ∈R

Therefore R is transitive

From the above proofs, the relation R is reflexive, symmetric, and transitive, therefore, R is an equivalent relation.

Reasons:

Prove that the relation R is reflexive

Reflexive property is a property is the property that a number has a value that it posses (it is equal to itself)

The given relation is ((a, b), (c, d)) ∈ R if and only if a·d = b·c

By multiplication property of equality; a·b = b·a

Therefore;

((a, b), (a, b)) ∈ R

The relation, R, is reflexive.

Prove that the relation, R, is symmetric

Given that if ((a, b), (c, d)) ∈ R then we have, a·d = b·c

Therefore, c·b = d·a implies ((c, d), (a, b)) ∈ R

((a, b), (c, d)) and ((c, d), (a, b)) are symmetric.

Therefore, the relation, R, is symmetric.

Prove that R is transitive

Symbolically, transitive property is as follows; If x = y, and y = z, then x = z

From the given relation, ((a, b), (c, d)) ∈ R, then a·d = b·c

Therefore, ((c, d), (e, f)) ∈ R, then c·f = d·e

By multiplication, a·d × c·f = b·c × d·e

a·d·c·f = b·c·d·e

Therefore;

a·f·c·d = b·e·c·d

a·f = b·e

Which gives;

((a, b), (e, f)) ∈ R, therefore, the relation, R, is transitive.

Therefore;

R is an equivalence relation, since R is reflexive, symmetric, and transitive.

Based on a similar question posted online, it is required to rank the given options in the order to show that R is an equivalence relation.

Learn more about equivalent relations here:

brainly.com/question/1503196

4 0
2 years ago
Aubrey’s dinner costs $85.She tips the waitstaff 30% for excellent service.
Arlecino [84]

Answer:

She tips the waiter 25.5 dollar.

Step-by-step explanation:

If the dinner cost 85 you multiply by .30 and you get 25.5. If you wanna find out whole cost after subtract 25.5 from 85.

3 0
2 years ago
A truck with a heavy load drove from Boston to New York at 50 mph. After dropping of the load, it returned from New York to Bost
leva [86]

Answer:

175/3 or 58.333...

Step-by-step explanation:

This is fairly complicated but I will try to make it as simple as possible. I also apologize in advance for how impossible it is to make fractions look like fractions. I also had to insert a bunch of unnecessary parentheses just because the fractions that I can make are relatively inaccurate.

The distance between 2 cities can be represented as d.

Time is d/r if r is rate, so B->NY=d/50

Similarly,NY->B is d/70

Obviously the average speed is 2d/(d/50+d/70), this is just an average time

Now just remove the d and get (d/d)*2/(1/50+1/70)

You can now multiply by the LCM/LCM, which is 350/350.

After calculating you will get 700/12 which is 58.333...(This is how to enter into your RSM browser) Hope this helps. Sorry it is so late.

8 0
3 years ago
Other questions:
  • What is the volume of a cube that measures 5 cm on each side?
    5·1 answer
  • Three consecutive integers whose sum is 138
    11·2 answers
  • ​ AD​ , BD , and CD are angle bisectors of the sides of △ABC . BE=12 m and BD=20 m.
    13·2 answers
  • Let g(x) = 2x2 - 11x. Find g(-1).
    7·1 answer
  • X is a natural number and a factor of 18 whats the value of X​
    10·1 answer
  • Solve the inequality. Enter the answer as an inequality that shows the value of the variable; for example f &gt; 7, or 6 &lt; w.
    5·1 answer
  • $9099 worth of tickets are sold to a football game. Adult tickets are eight dollars a person. Student tickets are six dollars a
    10·1 answer
  • One meter of electrical cord costs 3 dollars. How much should one pay for...<br><br> 2/3 meters?
    13·1 answer
  • Consider the right triangular prism. What is the volume of the right triangular prism? O 15 ft O 30 ft? O 150 ft" O 300 ft)​
    11·1 answer
  • Which of the lines is a line of symmetry for the hexagon?
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!