1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marin [14]
3 years ago
6

Solve the equation (1/2)2x + 1 = 1

Mathematics
1 answer:
snow_lady [41]3 years ago
8 0

(1/2)2x=1-1=02x/2=ox=0

You might be interested in
. On a test with 199 multiple choice questions, you received 149 correct answers. Estimate your results as a percentage.
Korolek [52]
567 to be a little late for a meeting and then I have a question for you and your dad to pick
8 0
3 years ago
There are 46 children at the zoo. Twenty-nine students like popcorn and twenty like peanuts. Fifteen like both. How many student
lesya [120]

Answer:none

Step-by-step explanation:

You must mean 64 instead of 46.Because 29+20+15=64 but none would agree to dislike both popcorn not peanuts.

3 0
2 years ago
Please get it right and check<br><br><br>Double check
KiRa [710]

1468 in cubed ᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠ                                                                                                                                                                

5 0
3 years ago
3. for each item, decide whether or not the given expression is defined. for each item that is defined, compute the result. (a)
Sati [7]

The results of given matrices can be obtained using matrix multiplication.

<h3>Find the results of the given matrices:</h3>

Here in the question it is given that,

A =  \left[\begin{array}{ccc}1&-1&2\\3&1&4\end{array}\right], B = \left[\begin{array}{ccc}2&-1&3\\5&1&2\\4&6&-2\end{array}\right], C = \left[\begin{array}{ccc}1\\-1\\2\end{array}\right], D = \left[\begin{array}{ccc}2&-2&3\end{array}\right],

E =\left[\begin{array}{ccc}2-i&1+i\\-i&2+4i\end{array}\right], F = \left[\begin{array}{ccc}i&1-3i\\0&4+i\end{array}\right]

We have to find AB, BC, CA, CD, C^{T} A^{T}, F², BD^{T}, A^{T} A and FE.

  • AB = \left[\begin{array}{ccc}1&-1&2\\3&1&4\end{array}\right]\left[\begin{array}{ccc}2&-1&3\\5&1&2\\4&6&-2\end{array}\right]

a₁₁ = 1×2 + (-1)×5 + 2×4 = 5, a₁₂ = 1×(-1) + (-1)×1 + 2×6 = 10, a₁₃ = 1×3 + (-1)×2 + 2×(-2) = -3, a₂₁ = 3×2 + 1×5 + 4×4 = 27, a₂₂ = 3×(-1) + 1×1 + 4×6 = 22, a₂₃ = 3×3 + 1×2 + 4×(-2) = 3

AB = \left[\begin{array}{ccc}5&10&-3\\27&22&3\end{array}\right]  

  • BC =  \left[\begin{array}{ccc}2&-1&3\\5&1&2\\4&6&-2\end{array}\right]   \left[\begin{array}{ccc}1\\-1\\2\end{array}\right]

a₁₁ = 2×1 + (-1)×(-1) + 3×2 = 9, a₂₁ = 5×1 + 1×(-1) + 2×2 = 8, a₃₁ = 4×1 + 6×(-1) + (-2)×2 = -6      

BC  = \left[\begin{array}{ccc}9\\8\\-6\end{array}\right]

  • CA, CA is not defined since dimension of the matrices are 3×1 and 2×3  
  • A^{T}E = \left[\begin{array}{ccc}1&3\\-1&1\\2&4\end{array}\right]\left[\begin{array}{ccc}2-i&1+i\\-i&2+4i\end{array}\right]

a₁₁ = 1×(2-i) + 3×(-i) = 2-4i, a₁₂ = 1x(1+i) +  3×(2+4i) = 7+13i, a₂₁ = -1×(2-i) + 1×(-i) = -2, a₂₂ = -1×(1+i) + 1×(2+4i) = 1+3i, a₃₁ = 2×(2-i) + 4×(-i) = 4-6i, a₃₂ = 2×(1+i) + 4×(2+4i) = 10+18i  

A^{T}E = \left[\begin{array}{ccc}2-4i&7+13i\\-2&1+3i\\4-6i&10+18i\end{array}\right]

  • CD = \left[\begin{array}{ccc}1\\-1\\2\end{array}\right]   \left[\begin{array}{ccc}2&-2&3\end{array}\right]

a₁₁ = 1×2 = 2, a₁₂ = 1×(-2) = -2, a₁₃ = 1×3 = 3, a₂₁ = -1×2 = -2, a₂₂ = -1×(-2) = 2, a₂₃ = -1×3 = -3,a₃₁= 2×2 = 4, a₃₂ = 2×(-2) = -4, a₃₃ = 2×3 = 6

CD = \left[\begin{array}{ccc}2&-2&3\\-2&2&-3\\4&-4&6\end{array}\right]

  • C^{T} A^{T} =\left[\begin{array}{ccc}1&-1&2\end{array}\right]\left[\begin{array}{ccc}1&3\\-1&1\\2&4\end{array}\right]

a₁₁ = 1×1 + (-1)×(-1) + 2×2 = 6, a₁₂ = 1×3 + (-1)×1 + 2×4 = 10

C^{T}A^{T}=\left[\begin{array}{ccc}6&10\end{array}\right]

  • F² = \left[\begin{array}{ccc}i&1-3i\\0&4+i\end{array}\right]\left[\begin{array}{ccc}i&1-3i\\0&4+i\end{array}\right]

a₁₁ = i×i + (1-3i)×0 = -1,a₁₂ = i×(1-3i) + (1-3i)×(4+i) = 10-10i, a₂₁= 0×i + (4+i)×0 = 0, a₂₂ = 0×(1-3i) + (4+i)×(4+i) = 15+8i

F² = \left[\begin{array}{ccc}-1&10-10i\\0&15+8i\end{array}\right]

  • BD^{T}=\left[\begin{array}{ccc}2&-1&3\\5&1&2\\4&6&-2\end{array}\right]\left[\begin{array}{ccc}2\\-2\\3\end{array}\right]

a₁₁ = 2×2 + (-1)×(-2) + 3×3 = 15, a₂₁ = 5×2 + 1×(-2) + 2×3 = 14, a₃₁ = 4×2 + 6×(-2) + (-2)×3 = -10

BD^{T}= \left[\begin{array}{ccc}15\\14\\-10\end{array}\right]

  • A^{T} A=\left[\begin{array}{ccc}1&3\\-1&1\\2&4\end{array}\right] \left[\begin{array}{ccc}1&-1&2\\3&1&4\end{array}\right]

a₁₁ = 1×1 + 3×3 = 10, a₁₂ = 1×(-1) + 3×1 = 2, a₁₃ = 1×2 + 3×4 = 14, a₂₁ = -1×1 + 1×3 = 2, a₂₂ = -1×(-1) + 1×1 = 2, a₂₃ = -1×2 + 1×4 = 2, a₃₁ = 2×1 + 4×3 = 14, a₃₂ = 2×(-1) + 4×1 = 2, a₃₃ = 2×2 + 4×4 = 20

A^{T} A=\left[\begin{array}{ccc}10&2&14\\2&2&2\\14&2&20\end{array}\right]

  • FE =  \left[\begin{array}{ccc}i&1-3i\\0&4+i\end{array}\right]   \left[\begin{array}{ccc}2-i&1+i\\-i&2+4i\end{array}\right]

a₁₁ = i×(2-i) + (1-3i)×(-i) = -2+i, a₁₂ = i×(1+i) + (1-3i)×(2+4i) = 13-i, a₂₁ = 0×(2-i) + (4+i)×(-i) = 1-4i, a₂₂ = 0×(1+i) + (4+i)×(2+4i) = 4+18i

FE = \left[\begin{array}{ccc}-2+i&13-i\\1-4i&4+18i\end{array}\right]

Hence we can obtain the results of the required matrices using matrix multiplication.

Disclaimer: The question was given incomplete on the portal. Here is the complete question.

Question: Let A =  \left[\begin{array}{ccc}1&-1&2\\3&1&4\end{array}\right], B = \left[\begin{array}{ccc}2&-1&3\\5&1&2\\4&6&-2\end{array}\right], C = \left[\begin{array}{ccc}1\\-1\\2\end{array}\right],                              D = \left[\begin{array}{ccc}2&-2&3\end{array}\right], E =\left[\begin{array}{ccc}2-i&1+i\\-i&2+4i\end{array}\right], F = \left[\begin{array}{ccc}i&1-3i\\0&4+i\end{array}\right]

For each item, decide whether or not the given expression is defined. for each item that is defined, compute the result.

AB, BC, CA, CD, C^{T} A^{T}, F², BD^{T}, A^{T} A and FE

Learn more about matrix here:

brainly.com/question/28180105

#SPJ4

8 0
2 years ago
In the figure, the measure of angle 7 is 57°. What is the measure of angle 8?
KiRa [710]
So if i assume your trying to get 180 Degrees then that means 180-57 degrees = angle 8 which would be 123 degrees.
3 0
3 years ago
Other questions:
  • In a gymnasium, the weights of all people come to exercise will be recorded. One day the weights of 10 people were recorded as 5
    10·1 answer
  • Match the trigonometric ratios with their values based on the triangle shown in the diagram.
    8·2 answers
  • The perimeter of a rectangle is to be no greater than 100 centimeters and the width must be 15 centimeters. Find the maximum len
    11·2 answers
  • point C(4,2) divides the line segment joining points A(2,-1) and B(x,y), such that AC:CB=3.1. what are the coordinates of point
    9·1 answer
  • q=you+have+50+blueberries+and+75+scone.+You+want+to+make+as+many+identtical+bags+as+possible.+Each+bag+should+have+an+equal+numb
    10·2 answers
  • Show questions
    5·1 answer
  • The sum of two numbers is 64 and their differences in 10. Find the numbers
    5·2 answers
  • Help me solve this problem ​
    9·2 answers
  • I NEED THIS NOW PLSSSSS
    11·1 answer
  • Find the missing pieces to the parallelogram of number 5
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!