Answer:
Photosynthesis
Explanation:
The process of taking carbon dioxide and water to form glucose is called Photosynthesis.
Answer:
Q = 44.9 j
Explanation:
Mass of iron = 5.0 g
Change in temperature = 20 °C
Specific heat of iron = 0.449 j/g.°C
Heat transferred = ?
Formula:
<em>Q = m.c. ΔT
</em>
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Solution:
<em>Q = m.c. ΔT
</em>
Q = 5 g × 0.449 j/g.°C × 20 °C
Q = 44.9 j
Answer: 3.4 atm
Explanation:
Given that:
Volume of gas V = 5L
(since 1 liter = 1dm3
5L = 5dm3)
Temperature T = 0°C
Convert Celsius to Kelvin
(0°C + 273 = 273K)
Pressure P = ?
Number of moles of gas n = 0.75 moles
Note that Molar gas constant R is a constant with a value of 0.0821 atm dm3 K-1 mol-1
Then, apply ideal gas equation
pV = nRT
p x 5dm3 = 0.75 moles x (0.0821 atm dm3 K-1 mol-1 x 273K)
p x 5dm3 = 16.8 atm dm3
p = (16.8 atm dm3 / 5dm3)
p = 3.4 atm
Thus, a pressure of 3.4 atm is exerted by the gas.
Answer:
The moles of KClO3 = 0.052 moles
Explanation:
Step 1: Calculate the pressure of oxygen gas
The oxygen has a total pressure (including water vapour) of 760 mmHg
The pressure of Oxygen = (760 - 26) mmHg
= 734 mmHg of water vapor
Step 2: Calculate the no of moles of oxygen
Using Ideal gas equation
P V = n R T
P = pressure of oxygen in N/m2 ( you should convert 734 mmHg to pascal or N/m2) = 97,858.6 N/m2 or pas
V = 2 litres = 0.002 m3
R = gas constant = 8.31
T= 27oC = 300 K
Applying this equation P V = n R T
97,858.6 x 0.002 = n x 8.31 x 300
n = 0.0785 mol of Oxygen
From the balanced equation
2 KClO 3 ---- 2 KCl + 3 O 2
3 moles of oxygen is produced from 2 moles KClO3
so 0.0785 mole of oxygen will be produced from x
x = (0.0785 x 2 ) / 3
x = 0.052 moles of KClO3