![f(x) = \frac{x + 4}{3x^{2} + 5x - 2}](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5Cfrac%7Bx%20%2B%204%7D%7B3x%5E%7B2%7D%20%2B%205x%20-%202%7D)
3x² + 5x - 2 = 0
3x² + 6x - x - 2 = 0
3x(x) + 3x(2) - 1(x) - 1(2) = 0
3x(x + 2) - 1(x + 2) = 0
(3x - 1)(x + 2) = 0
3x - 1 = 0 or x + 2 = 0
+ 1 + 1 - 2 - 2
3x = 1 or x = -2
3 3 1 1
x = ¹/₃ or x = -2
f(x) = 3x² + 5x - 2
f(¹/₃) = 3(¹/₃)² + 5(¹/₃) - 2
f(¹/₃) = 3(¹/₉) + 1²/₃ - 2
f(¹/₃) = ¹/₃ - ¹/₃
f(¹/₃) = 0
(x, f(x)) = (¹/₃, 0)
f(x) = 3x² + 5x - 2
f(-2) = 3(-2)² + 5(-2) - 2
f(-2) = 3(4) - 10 - 2
f(-2) = 12 - 12
f(-2) = 0
(x, f(x)) = (-2, 0)
Vertical Asymptotes: ¹/₃ or -2
Horizontal Asymptotes: 0
Oblique Asymptote: No Asymptotes
QUESTION 1
The given logarithm is
![8\log_g(x)+5\log_g(y)](https://tex.z-dn.net/?f=8%5Clog_g%28x%29%2B5%5Clog_g%28y%29)
We apply the power rule of logarithms; ![n\log_a(m)=\log_(m^n)](https://tex.z-dn.net/?f=n%5Clog_a%28m%29%3D%5Clog_%28m%5En%29)
![=\log_g(x^8)+\log_g(y^5)](https://tex.z-dn.net/?f=%3D%5Clog_g%28x%5E8%29%2B%5Clog_g%28y%5E5%29)
We now apply the product rule of logarithm;
![\log_a(m)+\log_a(n)=\log_a(mn)](https://tex.z-dn.net/?f=%5Clog_a%28m%29%2B%5Clog_a%28n%29%3D%5Clog_a%28mn%29)
![=\log_g(x^8y^5)](https://tex.z-dn.net/?f=%3D%5Clog_g%28x%5E8y%5E5%29)
QUESTION 2
The given logarithm is
![8\log_5(x)+\frac{3}{4}\log_5(y)-5\log_5(z)](https://tex.z-dn.net/?f=8%5Clog_5%28x%29%2B%5Cfrac%7B3%7D%7B4%7D%5Clog_5%28y%29-5%5Clog_5%28z%29)
We apply the power rule of logarithm to get;
![=\log_5(x^8)+\log_5(y^{\frac{3}{4}})-\log_5(z^5)](https://tex.z-dn.net/?f=%3D%5Clog_5%28x%5E8%29%2B%5Clog_5%28y%5E%7B%5Cfrac%7B3%7D%7B4%7D%7D%29-%5Clog_5%28z%5E5%29)
We apply the product to obtain;
![=\log_5(x^8\times y^{\frac{3}{4}})-\log_5(z^5)](https://tex.z-dn.net/?f=%3D%5Clog_5%28x%5E8%5Ctimes%20y%5E%7B%5Cfrac%7B3%7D%7B4%7D%7D%29-%5Clog_5%28z%5E5%29)
We apply the quotient rule; ![\log_a(m)-\log_a(n)=\log_a(\frac{m}{n} )](https://tex.z-dn.net/?f=%5Clog_a%28m%29-%5Clog_a%28n%29%3D%5Clog_a%28%5Cfrac%7Bm%7D%7Bn%7D%20%29)
![=\log_5(\frac{x^8\times y^{\frac{3}{4}}}{z^5})](https://tex.z-dn.net/?f=%3D%5Clog_5%28%5Cfrac%7Bx%5E8%5Ctimes%20y%5E%7B%5Cfrac%7B3%7D%7B4%7D%7D%7D%7Bz%5E5%7D%29)
![=\log_5(\frac{x^8 \sqrt[4]{y^3} }{z^5})](https://tex.z-dn.net/?f=%3D%5Clog_5%28%5Cfrac%7Bx%5E8%20%5Csqrt%5B4%5D%7By%5E3%7D%20%7D%7Bz%5E5%7D%29)
1) 8 41/48
2) 9 16/27
3) 41 2/5
4) 13 55/63
hope this helps x
Answer:
z
Step-by-step explanation:
z
The answer would be 6x(5x-2).
Since both terms have x in them, x will be apart of your answer.
The GCF of 12 and 30 is 6.
So you can factor out 6x from both terms.
Hope this helps!