An integer that would work is 14 so -3 + 14 = -11
The minimum initial deposit Arthur must make is $ 4.24.
Since Arthur is saving money to buy a used car in 8 months, and the car costs $ 2,180, and Arthur plans to start with an initial deposit and then deposit 25% more than the previous month until he has enough money to buy the car, to determine what is the minimum initial deposit Arthur must make the following calculation should be performed:
- X x 1.25 x 1.56 x 1.95 x 2.44 x 3.05 x 3.81 x 4.76 = 2180
- 514.10X = 2180
- X = 2180 / 514.10
- X = 4.24
Therefore, the minimum initial deposit Arthur must make is $ 4.24.
Learn more about maths in brainly.com/question/25749130
Answer:
1 7/8
Step-by-step explanation:
6 - 4 1/8
2 - 1/8
15/8 = 1 7/8
Step-by-step explanation:
<u>Given</u>
- f(x) = 4x³ + 3x² - 2x - 1
<u>Divide it by the following:</u>
<u>(a) 2x + 1</u>
- 4x³ + 3x² - 2x - 1 =
- (4x³ + 2x²) + (x² + 1/2x) - (5/2x + 5/4) + 1/4 =
- 2x²(2x+1) + 1/2x(2x + 1) - 5/4(2x + 1) + 1/4 =
- (2x + 1)(2x² + 1/2x - 5/4) + 1/4
Quotient = 2x² + 1/2x - 5/4
Remainder = 1/4
<u>(b) 2x - 3</u>
- 4x³ + 3x² - 2x - 1 =
- (4x³ - 6x²) + (9x² - 13.5x) + (11.5x - 17.25) + 16.25 =
- (2x -3)(2x² + 4.5x + 5.75) + 16.25
Quotient = 2x² + 4.5x + 5.75
Remainder = 16.25
<u>(c) 4x - 1</u>
- 4x³ + 3x² - 2x - 1 =
- (4x³ - x²) + (4x² - x) - (2x - 1/2) - 3/2 =
- (4x - 1)(x² + x - 1/2) - 3/2
Quotient = x² + x - 1/2
Remainder = - 3/2
<u>(d) x + 2</u>
- 4x³ + 3x² - 2x - 1 =
- (4x³ + 8x²) - (5x² + 10x) + (8x + 16) - 17 =
- (x + 2)(4x² - 5x + 8) - 17
Quotient = 4x² - 5x + 8
Remainder = - 17
Answer:

Step-by-step explanation:
Let's re-write the equations in order to get the variables as separated in independent terms as possible \:
First equation:

Second equation:

Third equation:

Now let's subtract term by term the reduced equation 3 from the reduced equation 1 in order to eliminate the term that contains "y":

Combine this last expression term by term with the reduced equation 2, and solve for "x" :

Now we use this value for "x" back in equation 1 to solve for "y":

And finally we solve for the third unknown "z":
