For graphs, always start with line <em>x</em> then do line <em>y</em>.
<em>Greetings from Brasil</em>
From radiciation properties:
![\large{A^{\frac{P}{Q}}=\sqrt[Q]{A^P}}](https://tex.z-dn.net/?f=%5Clarge%7BA%5E%7B%5Cfrac%7BP%7D%7BQ%7D%7D%3D%5Csqrt%5BQ%5D%7BA%5EP%7D%7D)
bringing to our problem
![\large{6^{\frac{1}{3}}=\sqrt[3]{6^1}}](https://tex.z-dn.net/?f=%5Clarge%7B6%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%3D%5Csqrt%5B3%5D%7B6%5E1%7D%7D)
<h2>∛6</h2>
m=-(5/4)
From left to right, (1,3) is first and then comes (5,-2). Always remember when finding slopes without equations, the rule is RISE over RUN, to the numerator and denominator, respectively.
The y value of the second coordinates becomes negative which is unlike the y value in the first coordinates, which means our slope is downward, meaning it has a negative sign in front.
In every slope, there’s a numerator, being the rise, and a denominator, being the run.
To find the rise, we must look at the y values. Starting at 3 going to -2 has a space of 5 units, making that our numerator.
To find the run, the first x value is 1 and the second is 5, making a space of 4, which is out denominator.
With these two numbers and the negative sign, we get -(5/4) as our slope.