Solve the following system using elimination:
{-2 x + 2 y + 3 z = 0 | (equation 1)
{-2 x - y + z = -3 | (equation 2)
{2 x + 3 y + 3 z = 5 | (equation 3)
Subtract equation 1 from equation 2:
{-(2 x) + 2 y + 3 z = 0 | (equation 1)
{0 x - 3 y - 2 z = -3 | (equation 2)
{2 x + 3 y + 3 z = 5 | (equation 3)
Multiply equation 2 by -1:
{-(2 x) + 2 y + 3 z = 0 | (equation 1)
{0 x+3 y + 2 z = 3 | (equation 2)
{2 x + 3 y + 3 z = 5 | (equation 3)
Add equation 1 to equation 3:
{-(2 x) + 2 y + 3 z = 0 | (equation 1)
{0 x+3 y + 2 z = 3 | (equation 2)
{0 x+5 y + 6 z = 5 | (equation 3)
Swap equation 2 with equation 3:
{-(2 x) + 2 y + 3 z = 0 | (equation 1)
{0 x+5 y + 6 z = 5 | (equation 2)
{0 x+3 y + 2 z = 3 | (equation 3)
Subtract 3/5 × (equation 2) from equation 3:
{-(2 x) + 2 y + 3 z = 0 | (equation 1)
{0 x+5 y + 6 z = 5 | (equation 2)
{0 x+0 y - (8 z)/5 = 0 | (equation 3)
Multiply equation 3 by 5/8:
{-(2 x) + 2 y + 3 z = 0 | (equation 1)
{0 x+5 y + 6 z = 5 | (equation 2)
{0 x+0 y - z = 0 | (equation 3)
Multiply equation 3 by -1:
{-(2 x) + 2 y + 3 z = 0 | (equation 1)
{0 x+5 y + 6 z = 5 | (equation 2)
{0 x+0 y+z = 0 | (equation 3)
Subtract 6 × (equation 3) from equation 2:
{-(2 x) + 2 y + 3 z = 0 | (equation 1)
{0 x+5 y+0 z = 5 | (equation 2)
{0 x+0 y+z = 0 | (equation 3)
Divide equation 2 by 5:
{-(2 x) + 2 y + 3 z = 0 | (equation 1)
{0 x+y+0 z = 1 | (equation 2)
{0 x+0 y+z = 0 | (equation 3)
Subtract 2 × (equation 2) from equation 1:
{-(2 x) + 0 y+3 z = -2 | (equation 1)
{0 x+y+0 z = 1 | (equation 2)
v0 x+0 y+z = 0 | (equation 3)
Subtract 3 × (equation 3) from equation 1:
{-(2 x)+0 y+0 z = -2 | (equation 1)
{0 x+y+0 z = 1 | (equation 2)
{0 x+0 y+z = 0 | (equation 3)
Divide equation 1 by -2:
{x+0 y+0 z = 1 | (equation 1)
{0 x+y+0 z = 1 | (equation 2)
{0 x+0 y+z = 0 | (equation 3)
Collect results:
Answer: {x = 1, y = 1, z = 0
Two fractions equivalent to each: Just divide or multiply both top AND bottom by the same number.<span>
5/6: 10/12 OR 15/18
15/30: 5/10 OR 1/2
45/60: 8/12 OR 4/6
Rewrite each pair or fractions with common denominator: Find the difference between the two bottom numbers, and multiply top and bottom number.
5/8 and 3/4: 4X2=8, 3X2=6. So, 5/8 and 6/8.
2/5 and 1/2: 2/5 and 2.5/5
9/9 and 5/7: 9/9 and ~5.7/9
Rewrite each in simple form: Find greatest common factor and divide.
9/54: 1/6
20/40: 1/2
100/110: 10/11
Are these fractions equivalent?
No. 5/1 and 5/5 are, because they are both 5 wholes. 1/5 is not because it is a fifth of a whole.
In what situation can you use multiplication to find equivalent fractions?
I'm sorry but I do not understand this question.
</span>Source(s):<span>I hope I helped, seeing as I have graduated with a math degree.</span>
Answer:
the answer is a and I hope this helps you.
If k is a constant of proportionality then we know from last week that
512= k ·32 so k=512/32=16;
This week
448= k · amount he saved
448=16· amount he saved
amount saved=448/16=28
Answer $28
Answer: A. 289.5
Method: 48.25 x 6 = 289.5