Two lines are perpendicular if their slope m and m' satisfy the equation

The slope of the given line is 4, because the line is written in the slope-intercept y=mx+q, where m is the slope.
So, the perpendicular slope is

So, we want a line with slope -1/4 and passing through (-1,3). We can use the formula

for the line passing trough (a,b) with slope m:

<span>24: 24, 48, 72, 96, 120,
144, 168, 192, 216, 240, <span>264, 288 ,312, 336, 360, 384,
408, 432, 456, 480, 504, 528, 552, 576, 600, 624, 648, 672, 696, 720, 744, 768,
792, 816, 840, 864, 888, 912, 936, 960, 984, 1008, 1032, 1056, 1080
</span></span>30: 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, 360, 390, 420, 450,
480, 510, 540, 570, 600, 630, 660, 690, 720, 750, 780, 810, 840, 870, 900, 930,
960, 990, 1020, 1050, 1080
54: 54, 108, 162, 216, 270, 324, 378, 442, 486, 540, <span>594, 648, 702, 756, 810,
864, 918, 972, 1026, 1080
1080p.</span>
Answer:
Mercury, Venus, Earth, Mars, and Uranus
Step-by-step explanation:
Calculate the escape velocity for each planet, using the equation v = √(2gR).
![\left[\begin{array}{cccc}Planet&R(m)&g(m/s^{2})&v(m/s)\\Mercury&2.43\times10^{6}&3.61&4190\\Venus&6.07\times10^{6}&8.83&10400\\Earth&6.37\times10^{6}&9.80&11200\\Mars&3.38\times10^{6}&3.75&5030\\Jupiter&6.98\times10^{7}&26.0&60200\\Saturn&5.82\times10^{7}&11.2&36100\\Uranus&2.35\times10^{7}&10.5&22200\\Neptune&2.27\times10^{7}&13.3&24600\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7DPlanet%26R%28m%29%26g%28m%2Fs%5E%7B2%7D%29%26v%28m%2Fs%29%5C%5CMercury%262.43%5Ctimes10%5E%7B6%7D%263.61%264190%5C%5CVenus%266.07%5Ctimes10%5E%7B6%7D%268.83%2610400%5C%5CEarth%266.37%5Ctimes10%5E%7B6%7D%269.80%2611200%5C%5CMars%263.38%5Ctimes10%5E%7B6%7D%263.75%265030%5C%5CJupiter%266.98%5Ctimes10%5E%7B7%7D%2626.0%2660200%5C%5CSaturn%265.82%5Ctimes10%5E%7B7%7D%2611.2%2636100%5C%5CUranus%262.35%5Ctimes10%5E%7B7%7D%2610.5%2622200%5C%5CNeptune%262.27%5Ctimes10%5E%7B7%7D%2613.3%2624600%5Cend%7Barray%7D%5Cright%5D)
The rocket's maximum velocity is double the Earth's escape velocity, or 22,400 m/s. So the planets the rocket can escape from are Mercury, Venus, Earth, Mars, and Uranus.