1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fiesta28 [93]
3 years ago
15

Joe is 6 feet tall and cast a 3 foot shadow. He is standing next to a building that cast a shadow that is 20 feet long. How tall

is the building.​
Mathematics
2 answers:
masha68 [24]3 years ago
4 0

Answer:

40 feet

Step-by-step explanation:

lorasvet [3.4K]3 years ago
4 0

Answer:

40 feet tall

Step-by-step explanation:

6/2 =3

?/2 =20

*2    *2

? = 40

you do inverse operations because 6 divided by 2 is 3... the ? is the variable for how tall the building is... ? divided by 2 = 20 so you multiply 2 and 20 to get the total height

You might be interested in
In a random sample of 75 American women age 18 to 30, 26 agreed with the statement that a woman should have the right to a legal
ddd [48]

Answer:

a) z=\frac{0.347-0.328}{\sqrt{0.338(1-0.338)(\frac{1}{75}+\frac{1}{64})}}=0.236  

p_v =2*P(Z>0.236)=0.813  

If we compare the p value and using any significance level for example \alpha=0.01 always p_v>\alpha so we can conclude that we have enough evidence to FAIL to reject the null hypothesis, and we can say that we don't have significant differences between the two proportions.  

b) We are confident at 99% that the difference between the two proportions is between -0.188 \leq p_B -p_A \leq 0.226

Step-by-step explanation:

Previous concepts and data given

A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".  

The margin of error is the range of values below and above the sample statistic in a confidence interval.  

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".  

p_A represent the real population proportion of women age 18 to 30  agreed with the statement that a woman should have the right to a legal abortion for any reason

\hat p_A =\frac{26}{75}=0.347 represent the estimated proportion of women age 18 to 30  agreed with the statement that a woman should have the right to a legal abortion for any reason

n_A=75 is the sample size for A

p_B represent the real population proportion for women age 58 to 70  agreed with the statement that a woman should have the right to a legal abortion for any reason

\hat p_B =\frac{21}{64}=0.328 represent the estimated proportion of women age 58 to 70  agreed with the statement that a woman should have the right to a legal abortion for any reason

n_B=64 is the sample size required for B

z represent the critical value for the margin of error and for the statisitc

The population proportion have the following distribution  

p \sim N(p,\sqrt{\frac{p(1-p)}{n}})

Part a

We need to conduct a hypothesis in order to check if the proportion are equal, the system of hypothesis would be:  

Null hypothesis:p_{A} = p_{B}  

Alternative hypothesis:p_{A} \neq p_{B}  

We need to apply a z test to compare proportions, and the statistic is given by:  

z=\frac{p_{A}-p_{B}}{\sqrt{\hat p (1-\hat p)(\frac{1}{n_{A}}+\frac{1}{n_{B}})}}   (1)

Where \hat p=\frac{X_{A}+X_{B}}{n_{A}+n_{B}}=\frac{26+21}{75+64}=0.338

Calculate the statistic

Replacing in formula (1) the values obtained we got this:  

z=\frac{0.347-0.328}{\sqrt{0.338(1-0.338)(\frac{1}{75}+\frac{1}{64})}}=0.236  

Statistical decision

Since is a two sided test the p value would be:  

p_v =2*P(Z>0.236)=0.813  

If we compare the p value and using any significance level for example \alpha=0.01 always p_v>\alpha so we can conclude that we have enough evidence to FAIL to reject the null hypothesis, and we can say that we don't have significant differences between the two proportions.  

Part b  

The confidence interval for the difference of two proportions would be given by this formula  

(\hat p_A -\hat p_B) \pm z_{\alpha/2} \sqrt{\frac{\hat p_A(1-\hat p_A)}{n_A} +\frac{\hat p_B (1-\hat p_B)}{n_B}}  

For the 99% confidence interval the value of \alpha=1-0.99=0.01 and \alpha/2=0.005, with that value we can find the quantile required for the interval in the normal standard distribution.  

z_{\alpha/2}=2.58  

And replacing into the confidence interval formula we got:  

(0.347-0.328) - 2.58 \sqrt{\frac{0.347(1-0.347)}{75} +\frac{0.328(1-0.328)}{64}}=-0.188  

(0.347-0.328) + 2.58 \sqrt{\frac{0.347(1-0.347)}{75} +\frac{0.328(1-0.328)}{64}}=0.226  

And the 99% confidence interval for the difference of proportions would be given (-0.188;0.226).  

We are confident at 99% that the difference between the two proportions is between -0.188 \leq p_B -p_A \leq 0.226

5 0
3 years ago
2148552 divide for 49​
evablogger [386]
Answer: 2148552/49 equals to 43,848
6 0
3 years ago
Particle P moves along the y-axis so that its position at time t is given by y(t)=4t−23 for all times t. A second particle, part
sergey [27]

a) The limit of the position of particle Q when time approaches 2 is -\pi.

b) The velocity of particle Q is v_{Q}(t) = \frac{2\pi\cdot \cos \pi t-\pi\cdot t \cdot \cos \pi t -\sin \pi t}{(2-t)^{2}} for all t \ne 2.

c) The rate of change of the distance between particle P and particle Q at time t = \frac{1}{2} is \frac{4\sqrt{82}}{9}.

<h3>How to apply limits and derivatives to the study of particle motion</h3>

a) To determine the limit for t = 2, we need to apply the following two <em>algebraic</em> substitutions:

u = \pi t (1)

k = 2\pi - u (2)

Then, the limit is written as follows:

x(t) =  \lim_{t \to 2} \frac{\sin \pi t}{2-t}

x(t) =  \lim_{t \to 2} \frac{\pi\cdot \sin \pi t}{2\pi - \pi t}

x(u) =  \lim_{u \to 2\pi} \frac{\pi\cdot \sin u}{2\pi - u}

x(k) =  \lim_{k \to 0} \frac{\pi\cdot \sin (2\pi-k)}{k}

x(k) =  -\pi\cdot  \lim_{k \to 0} \frac{\sin k}{k}

x(k) = -\pi

The limit of the position of particle Q when time approaches 2 is -\pi. \blacksquare

b) The function velocity of particle Q is determined by the <em>derivative</em> formula for the division between two functions, that is:

v_{Q}(t) = \frac{f'(t)\cdot g(t)-f(t)\cdot g'(t)}{g(t)^{2}} (3)

Where:

  • f(t) - Function numerator.
  • g(t) - Function denominator.
  • f'(t) - First derivative of the function numerator.
  • g'(x) - First derivative of the function denominator.

If we know that f(t) = \sin \pi t, g(t) = 2 - t, f'(t) = \pi \cdot \cos \pi t and g'(x) = -1, then the function velocity of the particle is:

v_{Q}(t) = \frac{\pi \cdot \cos \pi t \cdot (2-t)-\sin \pi t}{(2-t)^{2}}

v_{Q}(t) = \frac{2\pi\cdot \cos \pi t-\pi\cdot t \cdot \cos \pi t -\sin \pi t}{(2-t)^{2}}

The velocity of particle Q is v_{Q}(t) = \frac{2\pi\cdot \cos \pi t-\pi\cdot t \cdot \cos \pi t -\sin \pi t}{(2-t)^{2}} for all t \ne 2. \blacksquare

c) The vector <em>rate of change</em> of the distance between particle P and particle Q (\dot r_{Q/P} (t)) is equal to the <em>vectorial</em> difference between respective vectors <em>velocity</em>:

\dot r_{Q/P}(t) = \vec v_{Q}(t) - \vec v_{P}(t) (4)

Where \vec v_{P}(t) is the vector <em>velocity</em> of particle P.

If we know that \vec v_{P}(t) = (0, 4), \vec v_{Q}(t) = \left(\frac{2\pi\cdot \cos \pi t - \pi\cdot t \cdot \cos \pi t + \sin \pi t}{(2-t)^{2}}, 0 \right) and t = \frac{1}{2}, then the vector rate of change of the distance between the two particles:

\dot r_{P/Q}(t) = \left(\frac{2\pi \cdot \cos \pi t - \pi\cdot t \cdot \cos \pi t + \sin \pi t}{(2-t)^{2}}, -4 \right)

\dot r_{Q/P}\left(\frac{1}{2} \right) = \left(\frac{2\pi\cdot \cos \frac{\pi}{2}-\frac{\pi}{2}\cdot \cos \frac{\pi}{2} +\sin \frac{\pi}{2}}{\frac{3}{2} ^{2}}, -4 \right)

\dot r_{Q/P} \left(\frac{1}{2} \right) = \left(\frac{4}{9}, -4 \right)

The magnitude of the vector <em>rate of change</em> is determined by Pythagorean theorem:

|\dot r_{Q/P}| = \sqrt{\left(\frac{4}{9} \right)^{2}+(-4)^{2}}

|\dot r_{Q/P}| = \frac{4\sqrt{82}}{9}

The rate of change of the distance between particle P and particle Q at time t = \frac{1}{2} is \frac{4\sqrt{82}}{9}. \blacksquare

<h3>Remark</h3>

The statement is incomplete and poorly formatted. Correct form is shown below:

<em>Particle </em>P<em> moves along the y-axis so that its position at time </em>t<em> is given by </em>y(t) = 4\cdot t - 23<em> for all times </em>t<em>. A second particle, </em>Q<em>, moves along the x-axis so that its position at time </em>t<em> is given by </em>x(t) = \frac{\sin \pi t}{2-t}<em> for all times </em>t \ne 2<em>. </em>

<em />

<em>a)</em><em> As times approaches 2, what is the limit of the position of particle </em>Q?<em> Show the work that leads to your answer. </em>

<em />

<em>b) </em><em>Show that the velocity of particle </em>Q<em> is given by </em>v_{Q}(t) = \frac{2\pi\cdot \cos \pi t-\pi\cdot t \cdot \cos \pi t +\sin \pi t}{(2-t)^{2}}<em>.</em>

<em />

<em>c)</em><em> Find the rate of change of the distance between particle </em>P<em> and particle </em>Q<em> at time </em>t = \frac{1}{2}<em>. Show the work that leads to your answer.</em>

To learn more on derivatives, we kindly invite to check this verified question: brainly.com/question/2788760

3 0
2 years ago
B
Monica [59]
Annfiidsidnnw I didn’t have a time I was going on with my dad so he didn’t have to work so he was just asking if he could do anything else and he said I was just

4 0
2 years ago
The function f(x) is shown on the graph. If f(x) = 0, what is x?
Radda [10]

Answer:

C

Step-by-step explanation:

note y = f(x) = 0

y = 0 is the x- axis

We are looking for values of x on the x- axis where the graph crosses/touches

This occurs at

x = - 2, x = 1, x = 3 → C

4 0
2 years ago
Other questions:
  • 1/4 + 2/8 <br>adding fractions with unlike denominators show the work
    6·2 answers
  • What is the GCF of 33 and 55?
    10·1 answer
  • Sunflower produce approximately 50 seeds per flower. If one ounce of sunflower seeds contain an average of 72 seeds, how many fl
    13·1 answer
  • John finished 3/4 pages of his homework in 2/3 of an hour. How many hours will it take him to finish 3 pages of homework? (in a
    8·1 answer
  • Find the value of 3 square root of 1000​
    7·2 answers
  • Find the next three terms of the sequence. 2, 5, 4, 7, 6, ...
    9·1 answer
  • Write the next three terms in each sequence. Make sure your
    8·1 answer
  • Income tax returns show that the mean income of self-employed persons in a particular year was £15,000, with a standard deviatio
    8·1 answer
  • Two fractiobs have a common denominator of 8 what could the two fractions be
    7·2 answers
  • The graph of a function fis shown below.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!