Answer:
The perimeter (to the nearest integer) is 9.
Step-by-step explanation:
The upper half of this figure is a triangle with height 3 and base 6. If we divide this vertically we get two congruent triangles of height 3 and base 3. Using the Pythagorean Theorem we find the length of the diagonal of one of these small triangles: (diagonal)^2 = 3^2 + 3^2, or (diagonal)^2 = 2*3^2.
Therefore the diagonal length is (diagonal) = 3√2, and thus the total length of the uppermost two sides of this figure is 6√2.
The lower half of the figure has the shape of a trapezoid. Its base is 4. Both to the left and to the right of the vertical centerline of this trapezoid is a triangle of base 1 and height 3; we need to find the length of the diagonal of one such triangle. Using the Pythagorean Theorem, we get
(diagonal)^2 = 1^2 + 3^2, or 1 + 9, or 10. Thus, the length of each diagonal is √10, and so two diagonals comes to 2√10.
Then the perimeter consists of the sum 2√10 + 4 + 6√2.
which, when done on a calculator, comes to 9.48. We must round this off to the nearest whole number, obtaining the final result 9.
nice drawing
(altho I think this is for other subject)
Answer:
-17 =x
Step-by-step explanation:
144 = -12 (x + 5)
Divide each side by -12
144/-12 = -12 (x + 5)/-12
-12 = x+5
Subtract 5 from each side
-12-5 =x+5-5
-17 =x
Problem 5
Apply the Law of Sines
s/sin(S) = r/sin(R)
s/sin(78) = 10/sin(48)
s = sin(78)*10/sin(48)
s = 13.162274
<h3>Answer: 13.162274 approximately</h3>
=============================================================
Problem 6
Use the Law of Sines here as well.
x/sin(X) = y/sin(Y)
x/sin(53) = 6/sin(22)
x = sin(53)*6/sin(22)
x = 12.791588
<h3>Answer: 12.791588 approximately</h3>
The medium sized orange would have 62 calories. To divide by 1/5, which in decimal form is 0.2, you just multiply 310 by 0.2, therefore, giving you 62. Hope this helps!