Answer:
The next step would be adding -4 to the other side since it would cancel out -4
Step-by-step explanation:
Answer:
Step-by-step explanation:
Problem:
The possible values of x in the equation (60)x = 1;
Solution:
Such a problem like this in which the highest power of the unknown is 1 will have just one solution.
60x = 1
To solve this, we take the multiplicative inverse of 60;
the multiplicative inverse of 60 =
Use this inverse to multiply both sides of the expression;
60x = 1 x
x =
The amount to be invested today so as to have $12,500 in 12 years is $6,480.37.
The amount that would be in my account in 13 years is $44,707.37.
The amount I need to deposit now is $546.64.
<h3>How much should be invested today?</h3>
The amount to be invested today = future value / (1 + r)^nm
Where:
- r = interest rate = 5.5 / 365 = 0.015%
- m = number of compounding = 365
- n = number of years = 12
12500 / (1.00015)^(12 x 365) = $6,480.37
<h3>What is the future value of the account at the end of 13 years?</h3>
Future value = monthly deposits x annuity factor
Annuity factor = {[(1+r)^n] - 1} / r
Where:
- r = interest rate = 5.3 / 12 = 0.44%
- n = 13 x 12 = 156
200 x [{(1.0044^156) - 1} / 0.0044] = $44,707.37
<h3>What should be the monthly deposit?</h3>
Monthly deposit = future value / annuity factor
Annuity factor = {[(1+r)^n] - 1} / r
Where:
- r = 6.7 / 12 = 0.56%
- n = 2 x 12 = 24
$14,000 / [{(1.0056^24) - 1} / 0.0056] = $546.64
To learn more about annuities, please check: brainly.com/question/24108530
#SPJ1
Answer:
k-5. The question seems incomplete though.