Answer:
22
Step-by-step explanation:
198 = 2×3²×11
For 198n to be a perfect square, each prime factor must have an even exponent. So the smallest 198n would be:
198n = 2²×3²×11²
198n = 4356
n = 22
Answer:
<em>C:</em><em> </em><em>is</em><em> </em><em>co</em><em>rrect</em><em> answer</em>
<em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em>
<em>
</em>
Answer:1 2/3
Step-by-step explanation:
6 uses 1 1/4. To improper fraction 6 uses 5/4. Thus 1 will use 5/4 ×1/6= 5/24. Then 8 will use 8×5/24=5/3=1 2/3
Answer:
Mean=685
Variance=36.7
Step-by-step explanation:
The mean of uniform discrete distribution can be expressed as the average of the boundaries
mean=( b+a)/2
The variance of uniform discrete distribution can be expressed as the difference of the boundaries decreased by 1 and squared, decreased by 1 and divided by 12.
σ²=[(b-a+1)^2 - 1]/12
We were given the wavelength from from 675 to 695 nm which means
a= 675, b= 695
We can now calculate the mean by using the expresion below
mean=( b+a)/2
Mean=( 675 + 695)/2
=685
The variance can be calculated by using the expression below
σ²=[(b-a+1)^2 - 1]/12
σ²=[(695-675+1)^2 -1]/12
σ²=440/12
σ²=36.7
Therefore, the the mean and variance, of the wavelength distribution for this radiation are 685 and 36.7 respectively