The dP/dt of the adiabatic expansion is -42/11 kPa/min
<h3>How to calculate dP/dt in an adiabatic expansion?</h3>
An adiabatic process is a process in which there is no exchange of heat from the system to its surrounding neither during expansion nor during compression
Given b=1.5, P=7 kPa, V=110 cm³, and dV/dt=40 cm³/min
PVᵇ = C
Taking logs of both sides gives:
ln P + b ln V = ln C
Taking partial derivatives gives:

Substitutituting the values b, P, V and dV/dt into the derivative above:
1/7 x dP/dt + 1.5/110 x 40 = 0
1/7 x dP/dt + 6/11 = 0
1/7 x dP/dt = - 6/11
dP/dt = - 6/11 x 7
dP/dt = -42/11 kPa/min
Therefore, the value of dP/dt is -42/11 kPa/min
Learn more about adiabatic expansion on:
brainly.com/question/6966596
#SPJ1
Answer:
-8x
Step-by-step explanation:
Subtract 6°x from -2x.
Answer:
3z-44
Step-by-step explanation:
All you have to do is to simplify the numbers. 2 + 6 - 52 = -44.
Answer:

Step-by-step explanation:
We are given

Let's assume it can be factored as

now, we can multiply right side
and then we can compare it


now, we can compare coefficients



now, we can find all possible factors of 48
and then we can assume possible prime factors of 48





Since, we have to find the largest value of n
So, we will get consider larger value of r because of 5r
and because n is negative of 5r+s
so, we will both n and r as negative
So, we can assume
r=-48 and s=-1
so, we get


Answer:
∂u/∂xi = i·cos(sn)
Step-by-step explanation:
For u = sin(v), the partial derivative of u with respect to xi is ...
∂u/∂xi = cos(v)·∂v/xi
In this case, v=sn, and ∂sn/∂xi = i, so the derivatives of interest are ...
∂u/∂xi = i·cos(sn)