1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
polet [3.4K]
3 years ago
8

Which statement describes the relationship between x and y in these two equations? y = 2x and y = x + 2

Mathematics
1 answer:
love history [14]3 years ago
6 0

Answer:

D

Step-by-step explanation:

In y = 2x the value of y is twice the value of x, and in y = x + 2 the value of y is 2 more than the value of x.

You might be interested in
A sequence is defined by the recursive function f(n 1) = f(n) – 2.if f(1) = 10, what is f(3)?16830
iogann1982 [59]
Hello,

f(n+1)=f(n)-2
f(1)=10
f(2)=8
f(3)=6
...
5 0
3 years ago
Read 2 more answers
250 gram as a percentage of 1 kg ​
kodGreya [7K]

Hey there!

Answer: 25%

\rightarrow \:  (\sf{ \frac{250}{1000} ) \times 100}

\rightarrow \: ( \sf{0.25) \times 100}

\rightarrow \:  \sf{ = 25\%}

5 0
2 years ago
Read 2 more answers
The point (0,0) is a solution to which of these inequalities?
Gre4nikov [31]
It is the solution for B
3 0
3 years ago
How to do the inverse of a 3x3 matrix gaussian elimination.
nata0808 [166]

As an example, let's invert the matrix

\begin{bmatrix}-3&2&1\\2&1&1\\1&1&1\end{bmatrix}

We construct the augmented matrix,

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{array} \right]

On this augmented matrix, we perform row operations in such a way as to transform the matrix on the left side into the identity matrix, and the matrix on the right will be the inverse that we want to find.

Now we can carry out Gaussian elimination.

• Eliminate the column 1 entry in row 2.

Combine 2 times row 1 with 3 times row 2 :

2 (-3, 2, 1, 1, 0, 0) + 3 (2, 1, 1, 0, 1, 0)

= (-6, 4, 2, 2, 0, 0) + (6, 3, 3, 0, 3, 0)

= (0, 7, 5, 2, 3, 0)

which changes the augmented matrix to

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 5 & 2 & 3 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{array} \right]

• Eliminate the column 1 entry in row 3.

Using the new aug. matrix, combine row 1 and 3 times row 3 :

(-3, 2, 1, 1, 0, 0) + 3 (1, 1, 1, 0, 0, 1)

= (-3, 2, 1, 1, 0, 0) + (3, 3, 3, 0, 0, 3)

= (0, 5, 4, 1, 0, 3)

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 5 & 2 & 3 & 0 \\ 0 & 5 & 4 & 1 & 0 & 3 \end{array} \right]

• Eliminate the column 2 entry in row 3.

Combine -5 times row 2 and 7 times row 3 :

-5 (0, 7, 5, 2, 3, 0) + 7 (0, 5, 4, 1, 0, 3)

= (0, -35, -25, -10, -15, 0) + (0, 35, 28, 7, 0, 21)

= (0, 0, 3, -3, -15, 21)

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 5 & 2 & 3 & 0 \\ 0 & 0 & 3 & -3 & -15 & 21 \end{array} \right]

• Multiply row 3 by 1/3 :

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 5 & 2 & 3 & 0 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

• Eliminate the column 3 entry in row 2.

Combine row 2 and -5 times row 3 :

(0, 7, 5, 2, 3, 0) - 5 (0, 0, 1, -1, -5, 7)

= (0, 7, 5, 2, 3, 0) + (0, 0, -5, 5, 25, -35)

= (0, 7, 0, 7, 28, -35)

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 0 & 7 & 28 & -35 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

• Multiply row 2 by 1/7 :

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 4 & -5 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

• Eliminate the column 2 and 3 entries in row 1.

Combine row 1, -2 times row 2, and -1 times row 3 :

(-3, 2, 1, 1, 0, 0) - 2 (0, 1, 0, 1, 4, -5) - (0, 0, 1, -1, -5, 7)

= (-3, 2, 1, 1, 0, 0) + (0, -2, 0, -2, -8, 10) + (0, 0, -1, 1, 5, -7)

= (-3, 0, 0, 0, -3, 3)

\left[ \begin{array}{ccc|ccc} -3 & 0 & 0 & 0 & -3 & 3 \\ 0 & 1 & 0 & 1 & 4 & -5 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

• Multiply row 1 by -1/3 :

\left[ \begin{array}{ccc|ccc} 1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & 1 & 4 & -5 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

So, the inverse of our matrix is

\begin{bmatrix}-3&2&1\\2&1&1\\1&1&1\end{bmatrix}^{-1} = \begin{bmatrix}0&1&-1\\1&4&-5\\-1&-5&7\end{bmatrix}

6 0
2 years ago
If p(a | b) = 0.4, p(b) = 0.8, and p(a) = 0.5, are the events a and b independent?
pashok25 [27]

The events A and B are not independent.

Given that,

                  P(A|B) = 0.4

                  P(A) = 0.5

                  P(B) = 0.8

Two events A and B are said to be independent, if P(A∩B) = P(A) P(B)

We have, P(A|B) = P(A∩B)/P(B)

Therefore, P(A∩B) = P(A|B) P(B) = 0.4 x 0.8 = 0.32

Now P(A) P(B) = 0.5 x 0.8 = 0.4

So P(A∩B) ≠ P(A)P(B)

Therefore, the events A and B are not independent.

Learn more about independent events at brainly.com/question/22881926

#SPJ4

7 0
1 year ago
Other questions:
  • Haley and Bianca leave their house at the same time riding their bicycles in opposite directions. Haley rides four mph faster th
    5·1 answer
  • 6 - (3t+4) = t solve the equation
    13·2 answers
  • Answer the following questions:
    11·1 answer
  • Which equation represents a proportional relationship between the x and y values?
    13·1 answer
  • How many right angles can be in an obtuse angle?
    7·2 answers
  • How many solutions does this system have?
    11·1 answer
  • Can someone help me Plz
    7·1 answer
  • That’s why the words “Member FDIC” are so important. This indicates that your bank is covered by the federal government. If anyt
    10·1 answer
  • What is a solution to a system of equations​
    12·1 answer
  • Question 5 of 5 Which inequality is true? O A. 1 - 3 > 1 O B. B. > 1 O C. 97 > 27 D. TI +7 < 10 SUBMIT​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!