Answer: D. Infinitely many solutions
Explanation:
1. Remove parentheses
2. Cancel equal terms
3. Calculate them
Then you would get 6=6 which is true for any value of x
The sector (shaded segment + triangle) makes up 1/3 of the circle (which is evident from the fact that the labeled arc measures 120° and a full circle measures 360°). The circle has radius 96 cm, so its total area is π (96 cm)² = 9216π cm². The area of the sector is then 1/3 • 9216π cm² = 3072π cm².
The triangle is isosceles since two of its legs coincide with the radius of the circle, and the angle between these sides measures 120°, same as the arc it subtends. If b is the length of the third side in the triangle, then by the law of cosines
b² = 2 • (96 cm)² - 2 (96 cm)² cos(120°) ⇒ b = 96√3 cm
Call b the base of this triangle.
The vertex angle is 120°, so the other two angles have measure θ such that
120° + 2θ = 180°
since the interior angles of any triangle sum to 180°. Solve for θ :
2θ = 60°
θ = 30°
Draw an altitude for the triangle that connects the vertex to the base. This cuts the triangle into two smaller right triangles. Let h be the height of all these triangles. Using some trig, we find
tan(30°) = h / (b/2) ⇒ h = 48 cm
Then the area of the triangle is
1/2 bh = 1/2 • (96√3 cm) • (48 cm) = 2304√3 cm²
and the area of the shaded segment is the difference between the area of the sector and the area of the triangle:
3072π cm² - 2304√3 cm² ≈ 5660.3 cm²
Answer:
B
Step-by-step explanation:
To solve this problem we will start by calculating time needed for each of them to fill the pool.
We have formula:
Volume = rate * time
Or
time = volume / rate
Wilma:
time = 9900 / 900
time = 11h
Betty:
time = 9900 / 500
time = 19.8h
Now we substract these two numbers:
time_difference = 19.8 - 11 = 8.8h
Betty needs 8.8 hours more than Wilma to fill the pool.
Answer:
the answer is 10
Step-by-step explanation:
(8+4+14+16+8)/5