The angular velocity is defined by the position angle over time.
Get first the position angle of the pendulum which has the formula of s = rθ where s = arc length, r = radius (or length of the pendulum's string), and θ = position angle. Getting θ, we have <span>θ = s/r = 14.13 ft / 6 ft = 2.355 rad
Thus, the angular velocity is </span>θ/t where t = time; so 2.355 rad / 3 sec = 0.785 rad/sec
Hope this helps.
Answer:
y(s) = 
we will compare the denominator to the form 

comparing coefficients of terms in s
1
s: -2a = -10
a = -2/-10
a = 1/5
constant: 

hence the first answers are:
a = 1/5 = 0.2
β = 5.09
Given that y(s) = 
we insert the values of a and β
= 
to obtain the constants A and B we equate the numerators and we substituting s = 0.2 on both side to eliminate A
5(0.2)-53 = A(0.2-0.2) + B((0.2-0.2)²+5.09²)
-52 = B(26)
B = -52/26 = -2
to get A lets substitute s=0.4
5(0.4)-53 = A(0.4-0.2) + (-2)((0.4 - 0.2)²+5.09²)
-51 = 0.2A - 52.08
0.2A = -51 + 52.08
A = -1.08/0.2 = 5.4
<em>the constants are</em>
<em>a = 0.2</em>
<em>β = 5.09</em>
<em>A = 5.4</em>
<em>B = -2</em>
<em></em>
Step-by-step explanation:
- since the denominator has a complex root we compare with the standard form

- Expand and compare coefficients to obtain the values of a and <em>β </em>as shown above
- substitute the values gotten into the function
- Now assume any value for 's' but the assumption should be guided to eliminate an unknown, just as we've use s=0.2 above to eliminate A
- after obtaining the first constant, substitute the value back into the function and obtain the second just as we've shown clearly above
Thanks...
1) Take the perimeter and divide it by 4.
2) Take the answer from step 1 and square it (multiply by itself)
Eight x plus y equals two over seven