Given that Megan's tax rates were as follows:
<span>No tax one the first £11000 of earnings
</span><span>Earnings in excess of £11000 and up to £43000 taxed at a rate of 20%
</span><span>Earning in excess of 43000 and up to £150000 taxed at a rate of 40%
</span>Earnings over £150000 taxed at a rate of 45%
If Megan earned £158900 before tax last year, the amount of tax she paid in total is given as follows:
First <span>£11000 = </span><span>£0 tax
</span>Balance after first <span>£11000 = </span><span>£158900 - </span><span>£11000 = </span><span>£147900
</span>
Next (<span>£43000 - </span><span>£11000 = </span><span>£32000) = 20% of </span><span>£32000 = 0.2 x </span><span>£32000 = </span>£6400 tax
Balance after next <span>£32000 = </span><span>£147900 - </span><span>£32000 = </span><span><span>£115000</span> </span>
Next (<span>£150000 - </span><span>£43000 = </span><span>£107000) = 40% of </span><span>£107000 = 0.4 x </span><span>£107000 = </span><span>£42800 tax</span>
Balance after next <span>£107000 = </span><span>£115000 - </span><span>£107000 = </span><span>£8000</span>
Remaiming <span>£8000 = 45% of </span><span>£8000 = 0.45 x </span><span>£8000 = </span><span>£3600 tax</span>
Total tax = <span>£6400 + </span><span>£42800 + </span><span>£3600 = </span><span>£52800
Therefore, she paid a total of </span><span>£52800 in tax last year.</span>
3x^2-24x-21 would be your answer
Answer:
(see below)
Step-by-step explanation:
First, to make it easier for yourself, "flip" the triangles so that they "match." To see what I'm talking about, refer to IMAGE.A.
Now that you can tell that the congruent side and angles are corresponding, you have to prove them congruent.
There is one side and two angles, so it's AAS or SAA.
Complete the square for x and y.
7x^2 + 3y^2 - 28x - 12y = -19
7x^2 - 28x + 3y^2 - 12y = -19
7(x^2 - 4x) + 3(y^2 - 4y) = -19
7(x^2 - 4x + 4) + 3(y^2 - 4y + 4) = -19 + 28 + 12
7(x - 2)^2 + 3(y - 2)^2 = 21
Answer:
4
Step-by-step explanation:
The question is not clear. You have indicated the original function as 12sin(0) - 9sin²(0)
If so, the solution is trivial. At 0, sin(0) is 0 so the solution is 0
However, I will assume you meant the angle to be
rather than 0 which makes sense and proceed accordingly
We can find the maximum or minimum of any function by finding the first derivate and setting it equal to 0
The original function is

Taking the first derivative of this with respect to
and setting it equal to 0 lets us solve for the maximum (or minimum) value
The first derivative of
w.r.t
is

And setting this = 0 gives

Eliminating
on both sides and solving for
gives us
Plugging this value of
into the original equation gives us

This is the maximum value that the function can acquire. The attached graph shows this as correct