The volume of the composite figure is the third option 385.17 cubic centimeters.
Step-by-step explanation:
Step 1:
The composite figure consists of a cone and a half-sphere on top.
We will have to calculate the volumes of the cone and the half-sphere separately and then add them to obtain the total volume.
Step 2:
The volume of a cone is determined by multiplying
with π, the square of the radius (r²) and height (h). Here we substitute π as 3.1415.
The radius is 4 cm and the height is 15 cm.
The volume of the cone :
cubic cm.
Step 3:
The area of a half-sphere is half of a full sphere.
The volume of a sphere is given by multiplying
with π and the cube of the radius (r³).
Here the radius is 4 cm. We take π as 3.1415.
The volume of a full sphere
cubic cm.
The volume of the half-sphere
cubic cm.
Step 4:
The total volume = The volume of the cone + The volume of the half sphere,
The total volume
cub cm. This is closest to the third option 385.17 cubic centimeters.
Answer:
Step-by-step explanation:
Triangle DEF is a right angle triangle.
From the given right angle triangle,
DE represents the hypotenuse of the right angle triangle.
With ∠E as the reference angle,
EF represents the adjacent side of the right angle triangle.
DF represents the opposite side of the right angle triangle.
To determine EF, we would apply
trigonometric ratio
Cos θ = opposite side/hypotenuse. Therefore,
Cos 49 = EF/8
EF = 8Cos49 = 8 × 0.6561
EF = 5.2488
Rounding to the nearest tenth, it becomes 5.2
I have no idea but i really need help on this too33458584837
The shortest side is 3 m and the other side is 4 m. If you put all these numbers in the Pythagorean Theorem it checks out. (3^2+4^2=5^2)