Answer:
983040
Step-by-step explanation:
Second Year : 15x4=60
Third Year : 60x4=240
Fourth Year : 240x4=960
Fifth Year : 960x4=3840
Sixth Year : 3840x4=15360
Seventh Year : 15360x4 = 61440
Eighth Year: 61440x4=245760
Ninth Year : 245760x4= 983040
Answer:
1/5, 1/6, 1/7, 1/8
Step-by-step explanation:
The formula for the sequence is (n+3)!/ (n+4)!
The first terms uses n=1
a1 = (1+3)!/ (1+4)! = 4!/5! = (4*3*2*1)/(5*4*3*2*1) = 1/5
The first terms uses n=2
a2 = (2+3)!/ (2+4)! = 5!/6! = (5*4*3*2*1)/(6*5*4*3*2*1) = 1/6
The first terms uses n=3
a3 = (3+3)!/ (3+4)! = 6!/7! = (6*5*4*3*2*1)/(7*6*5*4*3*2*1) = 1/7
The first terms uses n=4
a4 = (4+3)!/ (4+4)! = 7!/8! = (7*6*5*4*3*2*1)/(8*7*6*5*4*3*2*1) = 1/8
Since BAF is opposite of DAE, they are equal to each other.
134 - 89 = 45
The correct answer is 45
Answer:
a) P(Y > 76) = 0.0122
b) i) P(both of them will be more than 76 inches tall) = 0.00015
ii) P(Y > 76) = 0.0007
Step-by-step explanation:
Given - The heights of men in a certain population follow a normal distribution with mean 69.7 inches and standard deviation 2.8 inches.
To find - (a) If a man is chosen at random from the population, find
the probability that he will be more than 76 inches tall.
(b) If two men are chosen at random from the population, find
the probability that
(i) both of them will be more than 76 inches tall;
(ii) their mean height will be more than 76 inches.
Proof -
a)
P(Y > 76) = P(Y - mean > 76 - mean)
= P(
) >
)
= P(Z >
)
= P(Z >
)
= P(Z > 2.25)
= 1 - P(Z ≤ 2.25)
= 0.0122
⇒P(Y > 76) = 0.0122
b)
(i)
P(both of them will be more than 76 inches tall) = (0.0122)²
= 0.00015
⇒P(both of them will be more than 76 inches tall) = 0.00015
(ii)
Given that,
Mean = 69.7,
= 1.979899,
Now,
P(Y > 76) = P(Y - mean > 76 - mean)
= P(
)) >
)
= P(Z >
)
= P(Z >
))
= P(Z > 3.182)
= 1 - P(Z ≤ 3.182)
= 0.0007
⇒P(Y > 76) = 0.0007