
<em><u>Solution:</u></em>
<em><u>Given expression is:</u></em>

We have to combine the like terms
From given expression,

By distributive property,
The distributive property lets you multiply a sum by multiplying each addend separately and then add the products.
a(b + c) = ab + bc
Therefore,
Solve for brackets using distributive property

Add 1/7 and 6/7

Thus the equivalent expression is found
Answer:
U ={ Parallelograms}
A= { Parallelogram with four congruent sides}={ Rhombus,Square}
B ={ Parallelograms with four congruent angles} ={ Rectangle, Square}
So, AB= { Square}
So among all the parallelograms "Square" is the only parallelogram which has all congruent sides as well as all congruent angles.
Answer:
6:9 ÷3
2:3
Step-by-step explanation:
1st write the ratio then simplify it with dividing with the Highest common factor on both sides
Answer:
Step-by-step explanation:
In Δ AFB,
∠AFB + ∠ABF + ∠A = 180 {Angle sum property of triangle}
90 + 48 + ∠1 = 180
138 + ∠1 = 180
∠1 = 180 - 138
∠1 = 42°
FC // ED and FD is transversal
So, ∠CFD ≅∠EDF {Alternate interior angles are congruent}
∠2 = 39°
In ΔFCD,
∠2 + ∠3 + ∠FCD = 180
39 + ∠3 + 90 = 180
129 +∠3 = 180
∠3 = 180- 129
∠3 = 51°
Answer:
DE = 13.4 cm (to 1 decimal place)
Step-by-step explanation:
Given: ABCD is a square
BC = AC = 12 cm (opposite sides of a square are congruent)
E is midpoint of BC (given)
BE = EC = 12/2 = 6 cm
CD = AB = 12 cm (opposite sides of a square are congruent)
angle ECD is a right angle (interior angles of a square are 90 deg.)
Consider right triangle ECD
DE = sqrt(EC^2+CD^2) ............. pythagorean theorem
= sqrt(6^2+12^2)
= sqrt ( 36+144 )
= sqrt (180)
= 2 sqrt(45)
= 13.416 (to three dec. places)