M(x) = 4x^3 - 5x^2 - 7x
Let us first find the zeros of the function.
That is when it is equal to zero.
m(x) = 4x^3 - 5x^2 - 7x = 0
x(4x^2 - 5x - 7) = 0. Therefore x = 0 or 4x^2 - 5x - 7 = 0.
Using a quadratic function calculator to solve 4x^2 - 5x - 7
x = 2.09, -0.84
Therefore the zeros are x =-0.84, 0, 2.09 for the function m(x).
The intervals observed are imagining that the zeros are on the number line:
x<-0.84, -0.84<x<0, 0<x<2.09, x>2.09.
For each of this range we would test the function with a number that falls in the range.
The function is decreasing in the interval where it is less than 0.
For x<-0.84, let us test x = -1, m(x) = 4x^3 - 5x^2 - 7x = 4(-1)^3 - 5(-1)^2 - 7(-1) = -4 -5 +7 = -2, -2 < 0, so it is decreasing here.
For -0.84<x<0, let us test x = -0.5, m(x) = 4x^3 - 5x^2 - 7x = 4(-0.5)^3 - 5(-0.5)^2 - 7(-0.5) = -0.5 -1.25 +3.5 = 1.75, 1.75 >0. It is not decreasing.
For 0<x<2.09, let us test x = 1, m(x) = 4x^3 - 5x^2 - 7x =
4(1)^3 - 5(1)^2 - 7(1) = 4 -5 -7 = -8, -8 <0. It is decreasing.
For x>2.09, let us test x = 3, m(x) = 4x^3 - 5x^2 - 7x =
4(3)^3 - 5(3)^2 - 7(3) = 108 -45 -21 = 42, 42 >0. It is not decreasing.
So the function is decreasing in the intervals:
x < -0.84, & 0<x<2.09.
If a number can be written or can be converted to p/q form, where p and q are integers and q is a non-zero number, then it is said to be rational and if it cannot be written in this form, then it is irrational.
Step by step explanation:
Hope this helps
Answer:
x > 7
Step-by-step explanation:
To simplify rational expressions, simply see and check if there is a common number or same number that can be divided from in both. If not here, you would simply multiply the numbers together.
Then simplify if you would need to.
It would be 85x/6