The length of the rug is 4 ft.
The width of the rug is 2.5 ft.
Explanation:
The area of the rug is 10 ft.
The length of the rug be l.
Let us convert the inches to feet.
Thus, ![18 inches = 1.5 ft](https://tex.z-dn.net/?f=18%20inches%20%3D%20%201.5%20ft)
Thus, the length of the rug is ![l=1.5+w](https://tex.z-dn.net/?f=l%3D1.5%2Bw)
Let the width of the rug be w.
Substituting these values in the formula of area of the rectangle, we get,
![A=length\times width](https://tex.z-dn.net/?f=A%3Dlength%5Ctimes%20width)
![10=(1.5+w)(w)\\10=1.5w+w^2\\w^2+1.5w-10=0](https://tex.z-dn.net/?f=10%3D%281.5%2Bw%29%28w%29%5C%5C10%3D1.5w%2Bw%5E2%5C%5Cw%5E2%2B1.5w-10%3D0)
Solving the expression using the quadratic formula,
![$w=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$](https://tex.z-dn.net/?f=%24w%3D%5Cfrac%7B-b%20%5Cpm%20%5Csqrt%7Bb%5E%7B2%7D-4%20a%20c%7D%7D%7B2%20a%7D%24)
Substituting the values, we have,
![$w=\frac{-15 \pm \sqrt{15^{2}-4 \cdot 10(-100)}}{2 \cdot 10}\\](https://tex.z-dn.net/?f=%24w%3D%5Cfrac%7B-15%20%5Cpm%20%5Csqrt%7B15%5E%7B2%7D-4%20%5Ccdot%2010%28-100%29%7D%7D%7B2%20%5Ccdot%2010%7D%5C%5C)
![$w=\frac{-15 \pm \sqrt{4225}}{20}$](https://tex.z-dn.net/?f=%24w%3D%5Cfrac%7B-15%20%5Cpm%20%5Csqrt%7B4225%7D%7D%7B20%7D%24)
![$w=\frac{-15 \pm 65}{2 0}$](https://tex.z-dn.net/?f=%24w%3D%5Cfrac%7B-15%20%5Cpm%2065%7D%7B2%200%7D%24)
Thus,
and ![w=\frac{-15 - 65}{2 0}\\w=\frac{-80}{20} \\w=-4](https://tex.z-dn.net/?f=w%3D%5Cfrac%7B-15%20-%2065%7D%7B2%200%7D%5C%5Cw%3D%5Cfrac%7B-80%7D%7B20%7D%20%5C%5Cw%3D-4)
Since, the value of w cannot be negative, the value of w is 2.5ft
Thus, the width of the rug is 2.5ft
Substituting
in
, we get,
![l=1.5+2.5\\l=4](https://tex.z-dn.net/?f=l%3D1.5%2B2.5%5C%5Cl%3D4)
Thus, the length of the rug is 4 ft.