Answer:
14.22
Step-by-step explanation: 1.58x9 meters=14.22 meters
Answer:
yes.
Step-by-step explanation:
sike.
Answer:
Step-by-step explanation:
Since the results for the standardized test are normally distributed, we would apply the formula for normal distribution which is expressed as
z = (x - µ)/σ
Where
x = test reults
µ = mean score
σ = standard deviation
From the information given,
µ = 1700 points
σ = 75 points
We want to the probability that a student will score more than 1700 points. This is expressed as
P(x > 1700) = 1 - P(x ≤ 1700)
For x = 1700,
z = (1700 - 1700)/75 = 0/75 = 0
Looking at the normal distribution table, the probability corresponding to the z score is 0.5
P(x > 1700) = 1 - 0.5 = 0.5
Answer:
(224)10 = (E0)16
I dont know why it wouldnt be right this is the answer...Im acually confused now
Step-by-step explanation:
(224)10 = (E0)16
Step by step solution
Step 1: Divide (224)10 successively by 16 until the quotient is 0:
224/16 = 14, remainder is 0
14/16 = 0, remainder is 14
Step 2: Read from the bottom (MSB) to top (LSB) as E0. This is the hexadecimal equivalent of decimal number 224
Answer:
The product of the slopes of lines is -1.
i.e. m₁ × m₂ = -1
Thus, the lines are perpendicular.
Step-by-step explanation:
The slope-intercept form of the line equation

where
Given the lines
y = 2/3 x -3 --- Line 1
y = -3/2x +2 --- Line 2
<u>The slope of line 1</u>
y = 2/3 x -3 --- Line 1
By comparing with the slope-intercept form of the line equation
The slope of line 1 is: m₁ = 2/3
<u>The slope of line 2</u>
y = -3/2x +2 --- Line 2
By comparing with the slope-intercept y = mx+b form of the line equation
The slope of line 2 is: m₂ = -3/2
We know that when two lines are perpendicular, the product of their slopes is -1.
Let us check the product of two slopes m₁ and m₂
m₁ × m₂ = (2/3)(-3/2
)
m₁ × m₂ = -1
Thus, the product of the slopes of lines is -1.
i.e. m₁ × m₂ = -1
Thus, the lines are perpendicular.