Answer (x represents the first direction and the y represents the second direction):
- (x - 3) × (y + 5)
- New bedroom: 7 ft × 15 ft. Her new bedroom is 5 sq. ft larger than her old bedroom
I hope this helps!
Answer:
36 3/4
Step-by-step explanation:
12 1/4 + 12 1/4 + 12 1/4 = 36 3/4 :)
In 1, t<span>here are 6 outcomes for each die, so for three dice, the total combination is 6 x 6 x 6 = 216 outcomes. Hence, t</span><span>he probability of any individual outcome is 1/216 </span>
The outcomes that will add up to 6 are
<span>1+1+4 </span>
<span>1+4+1 </span>
<span>4+1+1 </span>
<span>1+2+3 </span>
<span>1+3+2 </span>
<span>2+1+3 </span>
<span>2+3+1 </span>
<span>3+1+2 </span>
<span>3+2+1 </span>
<span>2+2+2 </span>
<span>Hence the probability is </span><span>10/216 </span>
In 3, the minimum sum of the three dice is 3. so we start with this
<span>P(n = 3) </span>
<span>1+1+1 ; </span><span>1/216 </span>
<span>P(n = 4) </span>
<span>1+1+2 </span>
<span>1+2+1 </span>
<span>2+1+1 ; </span><span>3/216 </span>
<span>P(n = 5) </span>
<span>1+1+3 </span>
<span>1+3+1 </span>
<span>3+1+1 </span>
<span>1+2+2 </span>
<span>2+1+2 </span>
<span>2+2+1; </span><span>6/216
The sum in 3 is 10/216 or 5/108</span>
Answer:
(a) 93.19%
(b) 267.3
Step-by-step explanation:
The population mean and standard deviation are given as 502 and 116 respectively.
Consider, <em>X</em> be the random variable that shows the SAT critical reading score is normally distributed.
(a) The percent of the SAT verbal scores are less than 675 can be calculated as:

Thus, the required percentage is 93.19%
(b)
The number of SAT verbal scores that are expected to be greater than 575 can be calculated as:

So,
Out of 1000 randomly selected SAT verbal scores, 1000(0.2673) = 267.3 are expected to have greater than 575.
A(b) = 12(b + 9) / 2
12(b + 9) = 2 A(b)
b + 9 = 2 A(b) / 12 = A(b) / 6
b = A(b)
----- - 9
6
B(a) = a
-- - 9
6
It's C