Domain is all the x values represented
domain here is infinitely because it can go on forever to the left and to the right
Answer:
See explaination
Step-by-step explanation:
Please kindly check attachment for the step by step solution of the given problem.
Step-by-step explanation:
You have found a function r(V(t)). We can see that this function is a one variable function. The variable is time.
So in this specific function we can call r(v(t)), r(t).
So:
![r(t) = \sqrt[3]{ \frac{3 \times (10 + 20t)}{4\pi} }](https://tex.z-dn.net/?f=r%28t%29%20%3D%20%20%5Csqrt%5B3%5D%7B%20%5Cfrac%7B3%20%5Ctimes%20%2810%20%2B%2020t%29%7D%7B4%5Cpi%7D%20%7D%20)
If α is the moment that the radius is 10 inches and since the function above gives radius in inches we have to solve the equation:

Which is the same as:
![\sqrt[3]{ \frac{3 \times (10 + 20 \alpha )}{4\pi} } = 10 \\ \frac{3 \times (10 + 20 \alpha )}{4\pi} = 1000 \\ (10 + 20 \alpha ) = \frac{4000\pi}{3} \\ 20 \alpha = \frac{(4000\pi - 30)}{3} \\ \alpha = \frac{(4000\pi - 30)}{60}](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B%20%5Cfrac%7B3%20%5Ctimes%20%2810%20%2B%2020%20%5Calpha%20%29%7D%7B4%5Cpi%7D%20%7D%20%20%3D%2010%20%5C%5C%20%20%5Cfrac%7B3%20%5Ctimes%20%2810%20%2B%2020%20%5Calpha%20%29%7D%7B4%5Cpi%7D%20%20%3D%201000%20%5C%5C%20%2810%20%2B%2020%20%5Calpha%20%29%20%3D%20%20%5Cfrac%7B4000%5Cpi%7D%7B3%7D%20%20%5C%5C%2020%20%5Calpha%20%20%3D%20%20%5Cfrac%7B%284000%5Cpi%20-%2030%29%7D%7B3%7D%20%5C%5C%20%20%5Calpha%20%20%3D%20%20%5Cfrac%7B%284000%5Cpi%20-%2030%29%7D%7B60%7D%20)
Answer:
Given the 2 values, height and the base, of these 2 triangles, we can assume that they are similar (meaning they share the same angles) as we have no other information to determine the height of the tree.
Therefore, if these triangles are similar, their corresponding sides are proportional. In other words, PZ/RT = QZ/ST or RT/PZ=ST/QZ
Hence, if we find the ratio of this, we can use it to find the side <em>h</em>
<em>QZ/ST=PZ/RT</em>
<em>48/12=PZ/4</em>
<em>PZ/4=48/12</em>
<em>(PZ/4)3=48/12</em>
<em>PZ(3)/12=48/12</em>
<em>48/3=16</em>
16=PZ.
3Step-by-step explanation: