Answer:
61.712
Step-by-step explanation:
Multiply .8x.04
Multiply .8x.0
Multiply .8x2
Multiply .8x2
Than add a zero under the answer of .8x.04
Multiply 2x.04
Multiply 2x.0
Multiply 2x2
Multiply 2x 2
 
        
             
        
        
        
Answer:
1. b ∈ B 2. ∀ a ∈ N; 2a ∈ Z 3. N ⊂ Z ⊂ Q ⊂ R 4. J ≤ J⁻¹ : J ∈ Z⁻
Step-by-step explanation:
1. Let b be the number and B be the set, so mathematically, it is written as 
b ∈ B.
2. Let  a be an element of natural number N and 2a be an even number. Since 2a is in the set of integers Z, we write 
∀ a ∈ N; 2a ∈ Z
3. Let N represent the set of natural numbers, Z represent the set of integers, Q represent the set of rational numbers, and R represent the set of rational numbers.
Since each set is a subset of the latter set, we write 
N ⊂ Z ⊂ Q ⊂ R .
4. Let J be the negative integer which is an element if negative integers. Let the set of negative integers be represented by Z⁻. Since J is less than or equal to its inverse, we write 
J ≤ J⁻¹ : J ∈ Z⁻ 
 
        
             
        
        
        
<h3>
Answer:   -i</h3>
========================================================
Explanation:
i = sqrt(-1)
Lets list out the first few powers of i
- i^0 = 1
- i^1 = i
- i^2 = -1
- i^3 = i*i^2 = i*(-1) = -i
- i^4 = (i^2)^2 = (-1)^2 = 1
By the time we reach the fourth power, we repeat the cycle over again (since i^0 is also equal to 1). The cycle is of length 4, which means we'll divide the exponent over 4 to find the remainder. Ignore the quotient. That remainder will determine if we go for i^0, i^1, i^2 or i^3. 
For example, i^5 = i^1 because 5/4 leads to a remainder 1.
Another example: i^6 = i^2 since 6/4 = 1 remainder 2
Again, we only care about the remainder to find out which bin we land on.
-------------
Turning to the question your teacher gave you, we have,
739/4 = 184 remainder 3
So i^739 = i^3 = -i
<h3>
-i is the final answer</h3>
--------------
Side notes:
- if i^a = i^b, then a-b is a multiple of 4
- Recall that the divisibility by 4 trick involves looking at the last two digits of the number. So i^739 is identical to i^39.
 
        
        
        
1 over 2 equals 2 over 4 equals 4 over 8.
Hope this helps! :)