Answer:
x = 4
Step-by-step explanation:

substitute x = 2 into f(x):

equate g(x) with found value for f(2) and solve for x:

Answer:
c
Step-by-step explanation:
i think
Answer:
0.018 is the probability that a randomly selected college student has an IQ greater than 131.5
Step-by-step explanation:
We are given the following information in the question:
Mean, μ = 100
Standard Deviation, σ = 15
We are given that the distribution of IQ score is a bell shaped distribution that is a normal distribution.
Formula:
a) P(IQ greater than 131.5)
P(x > 131.5)
Calculation the value from standard normal z table, we have,
0.018 is the probability that a randomly selected adult has an IQ greater than 131.5
Answer:
- 12 /13
Step-by-step explanation:
Given that:
Cot(θ) = 5 /12 ;
Recall ; cot θ = 1 / tan θ ; tan θ = sin θ / cos θ
Hence ;
tan θ = 1 / cot θ
tan θ = 1 ÷ (5 / 12)
tan θ = 1 * 12 /5 = 12/5
Tan θ = opposite / Adjacent = 12 /5
Sin θ = opposite / hypotenus
Hypotenus = √(opposite² + adjacent²)
Hypotenus = √12² + 5²
Hypotenus = √(144 + 25)
Hypotenus = √169
Hypotenus = 13
Hence,
Sin θ = opposite / hypotenus = 12 / 13
pi < theta < 3pi/2 lies in the 3rd quadrant ; SinΘ will be negative ;
Sin θ = - 12 /13
Recuerda que
• |<em>x</em>| = <em>x</em> si <em>x</em> ≥ 0
• |<em>x</em>| = -<em>x</em> si <em>x</em> < 0
Necesitas considerar dos casos:
• si <em>x</em> - 3 ≥ 0,
|<em>x</em> - 3| < 1 ⇒ <em>x</em> - 3 < 1 ⇒ <em>x</em> < 4
• si <em>x</em> - 3 < 0,
|<em>x</em> - 3| < 1 ⇒ -(<em>x</em> - 3) = 3 - <em>x</em> < 1 ⇒ -<em>x</em> < -2 ⇒ <em>x</em> > 2
Entonces la solución consta de todos los números reales <em>x</em> tales que <em>x</em> > 2 y <em>x</em> < 4, o simplemente 2 < <em>x</em> < 4.
El método para resolver las otras desigualdades es el mismo.
|4<em>x</em> + 1| > 0 ⇒ 4<em>x</em> + 1 > 0 o -(4<em>x</em> + 1) > 0
… ⇒ 4<em>x</em> + 1 > 0 o -4<em>x</em> - 1 > 0
… ⇒ 4<em>x</em> > -1 o -4<em>x</em> > 1
… ⇒ <em>x</em> > -1/4 o <em>x</em> < -1/4
⇒ <em>x</em> ≠ -1/4
|<em>x</em> - 1| < 5 ⇒ <em>x</em> - 1 < 5 o -(<em>x</em> - 1) < 5
… ⇒ <em>x</em> - 1 < 5 o -<em>x</em> + 1 < 5
… ⇒ <em>x</em> < 6 o -<em>x</em> < 4
… ⇒ <em>x</em> < 6 o <em>x</em> > -4
⇒ -4 < <em>x</em> < 6