Answer:
-70x + 21
Step-by-step explanation:
1-8(10x-3)
-7(10x-3)
Use distributive property
-70x + 21
(This is how we learned to do it in my school)
Answer:
P(a junior or a senior)=1
Step-by-step explanation:
The formula of the probability is given by:

Where P(A) is the probability of occurring an event A, n(A) is the number of favorable outcomes and N is the total number of outcomes.
In this case, N is the total number of the students of statistics class.
N=18+10=28
The probability of the union of two mutually exclusive events is given by:

Therefore:
P(a junior or a senior) =P(a junior)+P(a senior)
Because a student is a junior or a senior, not both.
n(a junior)=18
n(a senior)=10
P(a junior)=18/28
P(a senior) = 10/28
P(a junior or a senior) = 18/28 + 10/28
Solving the sum of the fractions:
P(a junior or a senior) = 28/28 = 1
"Adjacent" means next to each other. "Perpendicular" means at an angle of 90 degrees.
<span>Rectangles (this includes squares) have adjacent perpendicular sides. So do right triangles.</span>
£350 because 420/6 is 70 and 70*5 is 350
To solve these problems, we must remember the distributive property. This property states that a coefficient being multiplied by a polynomial in parentheses is equal to the sum of the coefficient times each of the separate terms. Using this knowledge, let's begin with number 21:
-(4x + 17) + 3(7-x)
To begin, we should distribute the negative sign through the first set of parentheses and the coefficient of positive 3 through the second set of parentheses.
-4x - 17 + 21 - 3x
Next, we must combine like terms, or add/subtract the constants terms and the variable terms in order to create a more concise expression.
-7x + 4 (your answer)
Now, we can move on to question 22 and solve it in a similar manner:
7(2n-8) - 4(12 - 8n)
Again, we will distribute the coefficients through the parentheses. However, keep in mind that the coefficient in front of the second set of parentheses is actually a NEGATIVE 4, so we must distribute the negative as well.
14n - 56 - 48 + 32n
Next, we will combine like terms (add the n terms together and subtract the constant terms).
46n - 104
Now, we can solve problem 23:
8 + 2(5f - 3)
We will again distribute through the parentheses:
8 + 10f - 6
Combine like terms after that:
10f + 2
Therefore, your answers for the three problems are as follows:
21) -7x + 4
22) 46n - 104
23) 10f + 2
Hope this helps!