Let ‘s’ be the son’s age 12 years ago.
Let ‘f’ be the father’s current age.
4 years ago, the son was:
s-4
So, his father is currently:
3(s-4)
=
3s-12
Therefore:
f = 3s-12
In twelve years, the son will be:
s+12
And the father will be:
f+12
This can also be written as:
3s-12+12 as the fathers younger age would be f = 3s+12
=
3s
So, we know that s+12 is half the fathers current age, meaning the father is currently 2(s+12) which is equivalent to 2s+24. Also, we know that the father is currently 3 times the sons age 12 years ago, so 3s (proven by the calculations we made above). Therefore, 2s+24=3s which means 24=s. We can then substitute this, and we will receive 24+12 = 36
Son’s current age: 36
We then substitute the son’s age 12 years ago into 2s+24 to give us the father’s age.
2(24)+24 = 72
Father’s current age: 72
Part 1:
For this case we must see in the graph the axis of symmetry of the given parabola.
We have then that the axis of symmetry is the vertical line t = 2.
Answer:
The height of the javelin above the ground is symmetric about the line t = 2 seconds:
Part 2:
For this case, we must see the time t for which the javelin reaches a height of 20 feet for the first time.
We then have that when evaluating t = 1, the function is h (1) = 20. To do this, just look at the graph.
Then, we must observe the moment when it returns to be 20 feet above the ground.
For this, observing the graph we see that:
h (3) = 20 feet
Therefore, a height of 20 feet is again reached in 3 seconds.
Answer:
The javelin is 20 feet above the ground for the first time at t = 1 second and again at t = 3 seconds
Answer:
76
or 238.76 
Step-by-step explanation:
The volume of a cylinder is V = 
Here the radius is r =
= 
The height is given as 19 ft
Then plug in all the numbers into the equation
V = 
Answer:
A. Perpendicular Lines
B. Circle
C. Angle
D. Plane
E. Parallel Lines
Hope this helped! Mark as Brainliest Please! :)))
Step-by-step explanation:
Answer:

Or if you want with the value of h too.

Step-by-step explanation:

Find the value of h and k by using the formula.

From y = x²-2

Substitute these values in the formula.

Therefore, h = 0.

Therefore, k = - 2.
From the vertex form, the vertex is at (h, k) = (0,-2). Substitute h = 0, a = 1 and k = -2 in the equation.

These type of equation where b = 0 can also be both standard and vertex form.