1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
anygoal [31]
3 years ago
11

Need help with this, finding the length of the third side

Mathematics
1 answer:
Advocard [28]3 years ago
5 0

Answer:

its sqrt (50)

Step-by-step explanation:

The triangle has a right angle, therefore we can use the Pythagorean theorem to find the hypotenuse. According to the theorem the sum of the squares of both other sides is equal to the square of the hypotenuse.

We have 5^2+5^2=c^2

=> 25+25=c^2

=> 50=c^2

Therefore c or the missing side is equal to sqrt(50)

You might be interested in
CAN SOMEONE HELP ME PLS!! im confused
neonofarm [45]

Answer:

the angle in upper and the lower corners have to be the same, so we can write an equation

5p-62 = 6p-88

(this picture is indeed complicated to read)

rearrange the equation

-62 = 1p-88

26 = p

hope this helped you

4 0
3 years ago
Part A: Solve −np − 70 < 40 for n. Show your work. (4 points) Part B: Solve 4w − 7k = 28 for k. Show your work.
kondaur [170]
Hey!

For part A, let's write the problem,
-np-70\ \textless \ 40
Add 70 to both sides...
-np-70+70\ \textless \ 40+70
-np\ \textless \ 110
We are going to reverse the inequality, to do this we are going to multiply both sides by -1.
\left(-np\right)\left(-1\right)\ \textgreater \ 110\left(-1\right)
pn\ \textgreater \ -110
Divide both sides by p.
\frac{pn}{p}\ \textgreater \ \frac{-110}{p}
Our answer would be,
n\ \textgreater \ -\frac{110}{p}

Let's go with Part B. Let's write the problem,
4w-7k=28
Subtract 4w from both sides,
4w-7k-4w=28-4w
-7k=28-4w
Divide both sides by -7.
\frac{-7k}{-7}=\frac{28}{-7}-\frac{4w}{-7}
If we simplified it, we would be left with,
k=-\frac{28-4w}{7}

Thanks!
-TetraFish

4 0
3 years ago
Two numbers, +10 and -10, are 10 units from 0 on the number line. Enter the correct answer.
neonofarm [45]

Answer:

nzfgfgnfsfhreaheyrzyhrsyhar5haqrtyqre4ger

3 0
3 years ago
Find the orthocenter for the triangle described by each set of vertices.
givi [52]

Answer:

The orthocentre of the given vertices ( 2 , -3.5)

Step-by-step explanation:

<u><em>Step(i)</em></u>:-

The orthocentre is the intersecting point for all the altitudes of the triangle.

The point where the altitudes of a triangle meet is known as the orthocentre.

Given Points are K (3.-3), L (2,1), M (4,-3)

<em>The Altitudes are perpendicular line from one side of the triangle to the opposite vertex</em>

<em>The altitudes are  MN , KO , LP</em>

<u><em>step(ii):-</em></u>

<em>  </em>  Slope of the line  

                          KL = \frac{y_{2}-y_{1}  }{x_{2}-x_{1}  } = \frac{1-(-3)}{2-3} = -4

The slope of MN =

The perpendicular slope of KL

                           = \frac{-1}{m} = \frac{-1}{-4} = \frac{1}{4}

The equation of the altitude

                                 y - y_{1} = m( x-x_{1} )

                                y - (-3) = \frac{1}{4} ( x-4 )

                               4y +12 = x -4

                                x - 4 y -16 = 0 ...(i)

Step(iii):-

 Slope of the line  

                          LM = \frac{y_{2}-y_{1}  }{x_{2}-x_{1}  } = \frac{-3-1}{4-2} = -2

The slope of KO =

The perpendicular slope of LM

                           = \frac{-1}{m} = \frac{-1}{-2} = \frac{1}{2}

The equation of the altitude

                                 y - y_{1} = m( x-x_{1} )

The equation of the line passing through the point K ( 3,-3) and slope

m = 1/2

                                y - (-3) = \frac{1}{2} ( x-3 )

                                2y +6 = x -3

                             x - 2y -9 =0 ....(ii)    

Solving equation (i) and (ii) , we get

  subtracting equation (i) and (ii) , we get

                   x - 4y -16 -( x-2y-9) =0

                       - 2y -7 =0

                      -2y = 7

                        y = - 3.5

Substitute y = -3.5 in equation x -4y-16=0

               x - 4( -3.5) - 16 =0

               x +14-16 =0

                x -2 =0

                  x = 2

The orthocentre of the given vertices ( 2 , -3.5)

4 0
3 years ago
Determine the values of n and m so that the following system have infinite number of solutions
cupoosta [38]

Answer:

n = 3

m = -1/2

Step-by-step explanation:

Multiply the second equation by 4

4(n - 2)x + y = 4(n + m)          Y is now correct.

4(n - 2) = 4                              Remove the brackets    

4n - 8 = 4                                Add 8 to both sides

4n = 8 + 4                               Combine

4n = 12                                    Divide by 4

n = 3                                        x is now correct

4(n - 2) = 4

4(3 -2) = 4

4 = 4

Now you have to worry about m

4(n + m) = 10

n = 3

4(3 + m) = 10                               Divide by 4

m + 3 = 10/4

m + 3 = 2.5                                 Subtract 3 from both sides.

m = 2.5 - 3

m = - 1/2  

6 0
3 years ago
Other questions:
  • Evaluate −12(−2).<br> 14<br> −14<br> −24<br> 24
    15·2 answers
  • reason abstractly: the formula F= 1.8C+32 allows you to find the Fahrenheit (F) temperature for a given Celsius (C) temperature.
    11·2 answers
  • Combine like terms in the following equation:<br> 18 – 5W + 7w - 4 = 28
    5·2 answers
  • Please help me how do i solve 0.75a = -9 using a two step equation
    12·2 answers
  • Please help me with this​
    10·1 answer
  • Please show work for BRAINLIEST
    10·2 answers
  • Solve |p + 2|= 10<br> (-12)<br> {-8. 8)<br> {-12, 8)
    7·1 answer
  • 4. Separate 77 into two parts so that one part is 4 less than twice as much as the other. Find each part.​
    11·1 answer
  • Help me please im like so desperate rn
    5·1 answer
  • A number line goes from negative 5 to positive 5. Point D is at negative 4 and point E is at positive 5. A line is drawn from po
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!