Answer:
A sample size of at least 1,353,733 is required.
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of , and a confidence level of , we have the following confidence interval of proportions.

In which
z is the zscore that has a pvalue of .
The margin of error is:

98% confidence level
So
, z is the value of Z that has a pvalue of
, so
.
You would like to be 98% confident that you esimate is within 0.1% of the true population proportion. How large of a sample size is required?
We need a sample size of at least n.
n is found when M = 0.001.
Since we don't have an estimate for the proportion, we use the worst case scenario, that is 
So






Rounding up
A sample size of at least 1,353,733 is required.