Answer:
v0 + 1/2at
Step-by-step explanation: Given that the distance a race car travels is given by the equation d = v0t+12at2 where v0 is the initial speed of the race car, a is the acceleration, and t is the time travelled.
The equation for the driver's average speed s during the acceleration will be:
(v0t+12at2) / t
Since Average speed is equal to distance divided by time.
Therefore, the equation will be:
v0+1/2at
![\bf f(x)=y=2x+sin(x) \\\\\\ inverse\implies x=2y+sin(y)\leftarrow f^{-1}(x)\leftarrow g(x) \\\\\\ \textit{now, the "y" in the inverse, is really just g(x)} \\\\\\ \textit{so, we can write it as }x=2g(x)+sin[g(x)]\\\\ -----------------------------\\\\](https://tex.z-dn.net/?f=%5Cbf%20f%28x%29%3Dy%3D2x%2Bsin%28x%29%0A%5C%5C%5C%5C%5C%5C%0Ainverse%5Cimplies%20x%3D2y%2Bsin%28y%29%5Cleftarrow%20f%5E%7B-1%7D%28x%29%5Cleftarrow%20g%28x%29%0A%5C%5C%5C%5C%5C%5C%0A%5Ctextit%7Bnow%2C%20the%20%22y%22%20in%20the%20inverse%2C%20is%20really%20just%20g%28x%29%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ctextit%7Bso%2C%20we%20can%20write%20it%20as%20%7Dx%3D2g%28x%29%2Bsin%5Bg%28x%29%5D%5C%5C%5C%5C%0A-----------------------------%5C%5C%5C%5C)
![\bf \textit{let's use implicit differentiation}\\\\ 1=2\cfrac{dg(x)}{dx}+cos[g(x)]\cdot \cfrac{dg(x)}{dx}\impliedby \textit{common factor} \\\\\\ 1=\cfrac{dg(x)}{dx}[2+cos[g(x)]]\implies \cfrac{1}{[2+cos[g(x)]]}=\cfrac{dg(x)}{dx}=g'(x)\\\\ -----------------------------\\\\ g'(2)=\cfrac{1}{2+cos[g(2)]}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Blet%27s%20use%20implicit%20differentiation%7D%5C%5C%5C%5C%0A1%3D2%5Ccfrac%7Bdg%28x%29%7D%7Bdx%7D%2Bcos%5Bg%28x%29%5D%5Ccdot%20%5Ccfrac%7Bdg%28x%29%7D%7Bdx%7D%5Cimpliedby%20%5Ctextit%7Bcommon%20factor%7D%0A%5C%5C%5C%5C%5C%5C%0A1%3D%5Ccfrac%7Bdg%28x%29%7D%7Bdx%7D%5B2%2Bcos%5Bg%28x%29%5D%5D%5Cimplies%20%5Ccfrac%7B1%7D%7B%5B2%2Bcos%5Bg%28x%29%5D%5D%7D%3D%5Ccfrac%7Bdg%28x%29%7D%7Bdx%7D%3Dg%27%28x%29%5C%5C%5C%5C%0A-----------------------------%5C%5C%5C%5C%0Ag%27%282%29%3D%5Ccfrac%7B1%7D%7B2%2Bcos%5Bg%282%29%5D%7D)
now, if we just knew what g(2) is, we'd be golden, however, we dunno
BUT, recall, g(x) is the inverse of f(x), meaning, all domain for f(x) is really the range of g(x) and, the range for f(x), is the domain for g(x)
for inverse expressions, the domain and range is the same as the original, just switched over
so, g(2) = some range value
that means if we use that value in f(x), f( some range value) = 2
so... in short, instead of getting the range from g(2), let's get the domain of f(x) IF the range is 2
thus 2 = 2x+sin(x)
![\bf 2=2x+sin(x)\implies 0=2x+sin(x)-2 \\\\\\ -----------------------------\\\\ g'(2)=\cfrac{1}{2+cos[g(2)]}\implies g'(2)=\cfrac{1}{2+cos[2x+sin(x)-2]}](https://tex.z-dn.net/?f=%5Cbf%202%3D2x%2Bsin%28x%29%5Cimplies%200%3D2x%2Bsin%28x%29-2%0A%5C%5C%5C%5C%5C%5C%0A-----------------------------%5C%5C%5C%5C%0Ag%27%282%29%3D%5Ccfrac%7B1%7D%7B2%2Bcos%5Bg%282%29%5D%7D%5Cimplies%20g%27%282%29%3D%5Ccfrac%7B1%7D%7B2%2Bcos%5B2x%2Bsin%28x%29-2%5D%7D)
hmmm I was looking for some constant value... but hmm, not sure there is one, so I think that'd be it
Answer:
y=-5/3x+20
Step-by-step explanation:
Let the equation of the required line be represented as ![\[y=mx+c\]](https://tex.z-dn.net/?f=%5C%5By%3Dmx%2Bc%5C%5D)
This line is perpendicular to the line ![\[y=\frac{3}{5}x+10\]](https://tex.z-dn.net/?f=%5C%5By%3D%5Cfrac%7B3%7D%7B5%7Dx%2B10%5C%5D)
![\[=>m*\frac{3}{5}=-1\]](https://tex.z-dn.net/?f=%5C%5B%3D%3Em%2A%5Cfrac%7B3%7D%7B5%7D%3D-1%5C%5D)
![\[=>m=\frac{-5}{3}\]](https://tex.z-dn.net/?f=%5C%5B%3D%3Em%3D%5Cfrac%7B-5%7D%7B3%7D%5C%5D)
So the equation of the required line becomes ![\[y=\frac{-5}{3}x+c\]](https://tex.z-dn.net/?f=%5C%5By%3D%5Cfrac%7B-5%7D%7B3%7Dx%2Bc%5C%5D)
This line passes through the point (15.-5)
![\[-5=\frac{-5}{3}*15+c\]](https://tex.z-dn.net/?f=%5C%5B-5%3D%5Cfrac%7B-5%7D%7B3%7D%2A15%2Bc%5C%5D)
![\[=>c=20\]](https://tex.z-dn.net/?f=%5C%5B%3D%3Ec%3D20%5C%5D)
So the equation of the required line is ![\[y=\frac{-5}{3}x+20\]](https://tex.z-dn.net/?f=%5C%5By%3D%5Cfrac%7B-5%7D%7B3%7Dx%2B20%5C%5D)
Among the given options, option 4 is the correct one.
Answer:
The point of intersection with the x axis are (-2,0) and (8,0)
Step-by-step explanation:
given circle equation x²+y² = 25
x² + y² = r²
r is the radius.
✓(25) = 5
given the center is at (3,0) and radius of 5
(3+5,0) and (3-5,0)
(8,0) and (-2,0)
(Please heart the answer if you find it helpful, it's a motivation for me to help more people)