Answer:
C
Solution
For a complex number written in the form a + bi, a is called the real part of the complex number and b is called the imaginary part. The sum of two complex numbers, a + bi and c + di, is found by adding real parts and imaginary parts, respectively, that is, (a + bi) + (c + di) = (a + c) + (b + d)i. Therefore, the sum of 2 + 3i and 4 + 8i is (2 + 4) + (3 + 8)i = 6 + 11i.
Choice A is incorrect and is the result of disregarding i and adding all parts of the two complex numbers together, 2 + 3 + 4 + 8 = 17. Choice B is incorrect and is the result of adding all parts of the two complex numbers together and multiplying the sum by i. Choice D is incorrect and is the result of multiplying the real parts and imaginary parts of the two complex numbers, (2)(4) = 8 and (3)(8) = 24, instead of adding those parts together.
Answer:
100
Step-by-step explanation:
10 + 45*2
10 + 90
100
Answer:
2x^2 = 6x - 5.
-x^2 - 10x = 34.
These have only complex roots/
Step-by-step explanation:
3x^2 - 5x = -8
3x^2 - 5x + 8 = 0
There are complex roots if the discriminant 9b^2 - 4ac) is negative.
Here the discriminant D = (-5)^2 - 4*-5*8 = 25 + 160
This is positive so the roots are real.
2x^2 = 6x - 5
2x^2 - 6x + 5 = 0
D = (-6)^2 - 4*2*5 = 36 - 40 = -4
So this has no real roots only complex ones.
12x = 9x^2 + 4
9x^2 - 12x + 4 = 0
D = (-12)^2 - 4*9 * 4 = 144 - 144 = 0.
- Real roots.
-x^2 - 10x = 34
x^2 + 10x + 34 = 0
D = (10)^2 - 4*1*34 = 100 - 136 = -36.
No real roots = only complex roots.
Answer:
Not a Function.... hope you pass!