Answer:
12/25
Step-by-step explanation:
1/2 = 25/50
1) 3/5 = 30/50
2) 12/25 = 24/50 (closest to 25/50)
3) 27/50
Answer:
2.93cm
Step-by-step explanation:
I have to admit, this stumped me but I got o work and here's what I have for you. Hope this helps. TIP: remember it is the minute hand not any other hand.
For this one you will have to find the circumference of the clock because as the min hand goes round and round, it will act as a <u>radius</u> and it will go in a <u>circular</u> motion.
Formula will be π<u>2r</u>= 3.l4 * 2 * 1.4cm=8.792cm per every<u> one</u> revolution of the minute hand. Remembering that for the minute hand to revolve round the clock it has to cover 1 hr = 60min. For you to get the total circumference,
you'll have to take 8.792cm but since it is per every <u>one</u> revolution of the minute hand, multiply it by 40/60min. <u><em>The answer will be 2.93066cm </em></u><u><em>before rounding off</em></u>. After rounding off you will have <u>2.93cm</u>. Quite lengthy but I assure you after practicing you'll have at your fingertips.
Answer:
"A Type I error in the context of this problem is to conclude that the true mean wind speed at the site is higher than 15 mph when it actually is not higher than 15 mph."
Step-by-step explanation:
A Type I error happens when a true null hypothesis is rejected.
In this case, as the claim that want to be tested is that the average wind speed is significantly higher than 15 mph, the null hypothesis has to state the opposite: the average wind speed is equal or less than 15 mph.
Then, with this null hypothesis, the Type I error implies a rejection of the hypothesis that the average wind speed is equal or less than 15 mph. This is equivalent to say that there is evidence that the average speed is significantly higher than 15 mph.
"A Type I error in the context of this problem is to conclude that the true mean wind speed at the site is higher than 15 mph when it actually is not higher than 15 mph."