The maximum value of the objective function is 26 and the minimum is -10
<h3>How to determine the maximum and the minimum values?</h3>
The objective function is given as:
z=−3x+5y
The constraints are
x+y≥−2
3x−y≤2
x−y≥−4
Start by plotting the constraints on a graph (see attachment)
From the attached graph, the vertices of the feasible region are
(3, 7), (0, -2), (-3, 1)
Substitute these values in the objective function
So, we have
z= −3 * 3 + 5 * 7 = 26
z= −3 * 0 + 5 * -2 = -10
z= −3 * -3 + 5 * 1 =14
Using the above values, we have:
The maximum value of the objective function is 26 and the minimum is -10
Read more about linear programming at:
brainly.com/question/15417573
#SPJ1
Answer:
8v^2+24-48x^3
Distribute the -8 to each term to get your answer.
Hope I helped!
Answer:
Trampolinist will land on the trampoline after 0.9 seconds.
Step-by-step explanation:
The function h(t) = -16t² + 15 represents the relation between height 'h' above the ground and the time 't' of the trampolinist.
We have to find the time when trampolinist lands on the ground.
That means we have to find the value of 't' when h(t) = 15 - 13 = 2
[Since trampoline is 2 feet above the ground]
When we plug in the value h(t) = 2
2 = -16t² + 15
2 + 16t² = -16t² + 16t² + 15
16t² + 2 = 15
16t² + 2 - 2 = 15 - 2
16t² = 13


t = 
t ≈ 0.9 seconds
Therefore, trampolinist will land on the trampoline at 0.9 seconds.
um 600?? I'm sorry if that's wrong