Answer:
-2.1
Step-by-step explanation:
-7.3 - 11.2 - 1.7 + 0 + 0 +2.2 + 3.3
--------------------------------------------------
7
= -2.1
Answer:
I think its rational
Step-by-step explanation:
Answer:
Option c, A square matrix
Step-by-step explanation:
Given system of linear equations are



Now to find the type of matrix can be formed by using this system
of equations
From the given system of linear equations we can form a matrix
Let A be a matrix
A matrix can be written by
A=co-efficient of x of 1st linear equation co-efficient of y of 1st linear equation constant of 1st terms linear equation
co-efficient of x of 2st linear equation co-efficient of y of 2st linear equation constant of 2st terms linear equation
co-efficient of x of 3st linear equation co-efficient of y of 3st linear equation constant of 3st terms linear equation 
which is a
matrix.
Therefore A can be written as
A= ![\left[\begin{array}{lll}3&-2&-2\\7&3&26\\-1&-11&46\end{array}\right] 3\times 3](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Blll%7D3%26-2%26-2%5C%5C7%263%2626%5C%5C-1%26-11%2646%5Cend%7Barray%7D%5Cright%5D%203%5Ctimes%203)
Matrix "A" is a
matrix so that it has 3 rows and 3 columns
A square matrix has equal rows and equal columns
Since matrix "A" has equal rows and columns Therefore it must be a square matrix
Therefore the given system of linear equation forms a square matrix
Answer:
The domain and range of this relationship is (-∞,∞) and (-∞,∞) respectively.
Step-by-step explanation:
We are given that Carly is traveling to visit family.
She drive distance on first day = x
She drive distance on second day = y
We are also given that Carly is travelling a total of 800 miles.
So,x+y=800
We are supposed to find domain and range of this relationship.
y=800-x
Domain : (-∞,∞)
Range:(-∞,∞)
Hence the domain and range of this relationship is (-∞,∞) and (-∞,∞) respectively.
(1-cos^2(x)) csc^2(x)=1
one of the trigonometry rules is sin^2(x) + cos^2(x) = 1 if you rearrange this you realize that sin^2= 1-cos^2(x)
we also know that csc^2(x)= 1/sin^2(x) so now you can rewrite your equation as:
sin^2(x) x 1/sin^2(x) = 1
sin^2(x)/sin^2(x) =1
the LHS (left hand side) can cancel down to 1 because the numerator and denominator are the same
so then 1=1 Therefore LHS=RHS
Hope this helps