<h3>
Answer: 40</h3>
=================================================
Explanation:
JQ is longer than QN. We can see this visually, but the rule for something like this is the segment from the vertex to the centroid is longer compared to the segment that spans from the centroid to the midpoint.
See the diagram below.
The ratio of these two lengths is 2:1, meaning that JQ is twice as long compared to QN. This is one property of the segments that form when we construct the centroid (recall that the centroid is the intersection of the medians)
We know that JN = 60
Let x = JQ and y = QN
The ratio of x to y is x/y and this is 2/1
x/y = 2/1
1*x = y*2
x = 2y
Now use the segment addition postulate
JQ + QN = JN
x + y = 60
2y + y = 60
3y = 60
y = 60/3
y = 20
QN = 20
JQ = 2*y = 2*QN = 2*20 = 40
--------------
We have
JQ = 40 and QN = 20
We see that JQ is twice as larger as QN and that JQ + QN is equal to 60.
Answer:
y = -
x
Step-by-step explanation:
Given that y varies directly with x then the equation relating them is
y = kx ← k is the constant of variation
To find k use the condition x = 24, y = - 6
- 6 = 24k ( divide both sides by 24 )
= k , that is
k = - 
y = -
x ← equation of variation
Answer:
73
Step-by-step explanation:
2x+x+53+88=360
Add up the numbers together.
3x+141=360
Subtract 141 from 360
3x=219
Divide 219 by 3
x=73