Given:
Consider the below figure attached with this question.
In circle A below, chord BC and diameter DAE intersect at F.
The arc CD = 46° and arc BE = 78°.
To find:
The measure of angle BFE.
Solution:
According to intersecting chords theorem, if two chords intersect inside the circle then the angle on the intersection is the average of intercepted arcs.
Using intersecting chords theorem, we get




Therefore, the measure of angle BFE is 62°.
يريدون منك استخدام النقاط لتساعد نفسك في رسم صورة المكعبات. هذا ليس سؤالًا حقًا يمكن لأي شخص مساعدتك في الإجابة عليه حيث عليك فقط رسم الصورة. النقاط هي فقط للمساعدة في جعل الأمر أسهل من مجرد الرسم باليد.
Answer:
Step-by-step explanation:
∡x = v0t + 1/2 at²
∡x / v0t = 1/2 at²
2∡x / v0t =at²
a = 2∡x / v0t³
that's your answer:)
Answer:
x approximately = 11.971, y approximately = 0.837
Step-by-step explanation:
the 12 ft is the hypotenuse of the right angle triangle formed
Cos (theta) = adjacent/hypotenuse
so Cos(4) = x/12, solving for x = 11.971
Sin(theta) = opposite/hypotenuse
so Sin(4) = y/12, solving for y = 0.837
The sum of all angles in a triangle is equal to 180.
75 + 70 + 5 + 3x = 180
150 + 3x = 180
3x = 180 - 150
3x = 30
x = 10
Third angle:
5 + 3(10)
35